Who Can you Trust in the IoT?
Internet Enabled Devices with Integrity

Stacy Cannady, scannady@cisco.com
Cisco Board representative to TCG
Agenda

• Background – What’s the Point?
• First Point – Identity and Integrity pillars – starting in a trusted state
• Second Point – Mandatory Access Control – staying trusted
• Third Point – Virtualization – security and trust that saves money
• Bonus – Types of Virtualization and Audience Resources
Background — what’s the point?

The point is that we can’t trust the IoT!

• We don’t trust our computers. We hope that they will do what we bought them to do and nothing more.

• We have no evidence that computers we use shall perform only the tasks we bought them to perform

• We often have evidence that they have been compromised to do something else.....
Internet of Things and the Risks We Face

Securing IoT: First Point – Identity & Integrity, Starting in a trusted state
TCG and two basic security problems for computers

- **Identity** – An asymmetric private key stored in secure hardware inside the device

- **Integrity** – Measure code before executing it
 - $\text{CurrentHash}(\text{application.dex})$ vs. $\text{GoldenHash}(\text{application.dex})$
 - $\text{CurrentHash}(\text{firmware})$ vs. $\text{GoldenHash}(\text{firmware})$
 - $\text{CurrentHash}(\text{OS Kernel})$ vs. $\text{GoldenHash}(\text{OS Kernel})$
 - $\text{CurrentHash}(\text{config files})$ vs. $\text{GoldenHash}(\text{config files})$

If $\text{CurrentHash()} = \text{GoldenHash()}$, then the code can be trusted.

“Golden” means the expected measurement, assuming the code hasn’t been changed

www.trustedcomputinggroup.org
Example: TPMs Help Avoid Stranger Danger

- **Problem:** Pharmaceutical Company requires high level of confidence that **all** end points in the network belong to them

- **Solution:**
 - VPN Logon requires a digital certificate
 - Certificate is protected by a TPM
 - Therefore only company owned end-points can connect to the network
Example: The value of integrity Measurement
Google’s Chromebook –A Self-Healing Computer

- Security hardware and firmware measure firmware at boot
- Measurements are internally verified
- If a mismatch is found, the offending module is rolled back to the Last Known Good version, kept on board
- Then boot continues

The computer always comes up in a known state

1. Power on
2. Security HW measures firmware
3. Measurements match expectations
3.5 Rollback bad module to last known good copy
4. Execute firmware and boot
Second Point — Mandatory Access Control
Enforcing process and data isolation to stay in a trusted state
Isolate process from each other and from the OS

- **SE Linux and SE Android** –
 - “Security Enhanced” Linux and Android –
 - Kernel mods, tools and configuration files
 - Initial work done by the NSA, then open sourced
 - SE Android is built on top of SE Linux

- **SE Security Model:**
 - Mandatory Access Control – **nothing** happens unless it is allowed to happen
 - The basic security model: there are **Subjects / Actions / Objects**
 - Subjects are processes
 - Actions are anything a process might do to an object
 - Objects are anything a process might take action on
 - The Security Server process must permit a Subject to take Action on an Object -
 Subject="Stacy" Action=Write Object=Syslog ALLOW
Application Security

• Secure by design
 • Threat modeling
 • Use Least Privilege
 • Use sandboxing

• Secure Coding – see Resources page

• Include security as part of App testing
 • Define the attack surface
 • Exercise that surface with the right tools
 • Fuzzing and robustness tests
 • Red Team hacking
 • Static analysis
Example, Motorola’s AME 2000

• Smartphone user experience
 Commercial, off-the-shelf devices offer the latest capabilities, form factors and user interface
 Secure deployable data
 Extend the security and functionality of the network to the field via integrated Suite B IPSec VPN and Data at Rest protection

• Defense in depth
 Integrated security layers provide confidentiality, integrity and availability of VoIP and data communications
 Hardware root of trust
 Hardware security module provides tamper protection for keys, tokens

• Integrated security solution
 Complete end-to-end solution with single-source accountability for complete security of voice, video and applications

Third Point – Virtualization: Security and trust that saves the OEM money
Third Point: Virtualization

- **Business value:** Separate hardware from software
 - Saves software migration costs as HW evolves
 - Maximizes use of available resources
 - Virtualization saves the OEM $$$$

- **Security & Trust value:**
 - Process isolation
 - Ability to create a layered security model within the embedded device
Bonus material –
Types of Virtualization and audience resources
"Sandboxing" –

This is how application isolation is done in Android / iOS today. Might be better thought of as hardened process isolation.

• Pros:
 • Widely supported under Linux
 • Lightweight and fast
 • Can support lots of virtual instances.

• Cons:
 • Weak isolation of instances and data
 • All instances must support the host OS

Example: All iPhones
Paravirtualization or Type 2 Virtualization

A host OS runs the modified guest as an application

The guest OS is modified to be aware that it is running under another OS

• **Pros:**
 • Lightweight and fast
 • Guest OS Images are significantly smaller
 • Can be used on processors that do not support virtualization

• **Cons:**
 • Guest OS must support hypercalls instead of native functions.

Example: Samsung Knox, today
Full Virtualization or Type 1 Virtualization

The VMM represents itself as real HW to the Guest OS. The Guest OS does not know it is a VM

- **Pros:**
 - Can support any OS, without modification to that OS

- **Cons:**
 - Requires virtualization hardware (at least memory re-mapping)
 - Requires full installation of the OS

Example: Motorola AME 2000

Samsung Knox, roadmap
Resources 1/2

• Trusted Computing: www.trustedcomputinggroup.org

• SE Linux and SE Android:
 http://selinuxproject.org/page/Main_Page
 http://selinuxproject.org/page/SEAndroid

• Secure coding:
 www.safecode.org
 http://www.android-permissions.org/
 http://www.cert.org/secure-coding/
Resources 2/2

- Virtualization / paravirtualization primers

- Virtualization – hypervisors
 Source for a bare-metal hypervisor for ARM-7: http://dev.b-labs.com/
 www.ok-labs.com

- Paravirtualization –
 http://www.linux-kvm.org/page/Main_Page

- Samsung Knox
Hacking IoT for Fun!

• Texas students fake GPS signals and take control of an $80 million yacht

• Polish teen derails tram after hacking train network
 http://www.theregister.co.uk/2008/01/11/tram_hack/

• You may hate parallel parking, but you're going to hate it even more when somebody commandeers control of your car with you in it.

• Hacking insulin pumps and other medical devices