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1. Scope and Audience 1 

The TCG specifications define a Trusted Platform Module (TPM) and its use in a PC client. The “TCG Mobile 2 
Trusted Module Specification” [5] is a specification that defines the necessary interface for implementing 3 
Mobile Trusted Modules. This specification defines a reference architecture that defines ways of instantiating 4 
and using Mobile Trusted Modules as defined in “TCG Mobile Trusted Module Specification”. 5 

This document is an industry specification that enables the building of trust in mobile phones using a 6 
standardized approach. 7 

1.1 Key words 8 

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,” 9 
“RECOMMENDED,” “MAY,” and “OPTIONAL” in the chapters 2-7  normative statements are to be interpreted 10 
as described in [RFC-2119]. 11 

1.2 Statement Type 12 

Please note a very important distinction between different sections of text throughout this document. You 13 
will encounter two distinctive kinds of text: informative comment and normative statements. Because most 14 
of the text in this specification will be of the kind normative statements, the authors have informally defined 15 
it as the default and, as such, have specifically called out text of the kind informative comment. They have 16 
done this by flagging the beginning and end of each informative comment and highlighting its text in gray. 17 
This means that unless text is specifically marked as of the kind informative comment, you can consider it of 18 
the kind normative statements.  19 

For example: 20 

Start of informative comment: 21 

This is the first paragraph of 1–n paragraphs containing text of the kind informative comment ... 22 

This is the second paragraph of text of the kind informative comment ... 23 

This is the nth paragraph of text of the kind informative comment ... 24 

To understand the TPM specification the user must read the specification. (This use of MUST does not require 25 
any action). 26 

End of informative comment. 27 

This is the first paragraph of one or more paragraphs (and/or sections) containing the text of the kind 28 
normative statements ...  29 

To understand the TPM specification the user MUST read the specification. (This use of MUST indicates a 30 
keyword usage and requires an action).  31 
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1.3 References 1 
[1]  Trusted Computing Group, TPM Main Part 1 Design Principles, Specification Version 1.2 Revision 103, July 2007 

[2]  Trusted Computing Group, TPM Main Part 2 TPM Structures, Specification Version 1.2 Revision 103, July 2007 

[3]  Trusted Computing Group, TPM Main Part 3 Commands, Specification Version 1.2 Revision 103, July 2007 

[4]  Trusted Computing Group, Mobile Phone Work Group Use Case Scenarios, Specification Version 2.7, 2005. 

[5]  Trusted Computing Group, TCG Mobile Trusted Module Specification, Version 1.0 Revision 6, June 2008 

[6]  Trusted Computing Group, TCG Credential Profiles, Specification Version 1.1, Revision 1.014, 21 May 2007, For TPM Family 1.2; Level 2 

[7]  Trusted Computing Group,TCG Glossary of Technical Terms,  https://www.trustedcomputinggroup.org/groups/glossary/ 

[8]  Trusted Computing Group, TCG Specification Architecture Overview, Revision 1.4, August 2007 

  2 
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2. Basic Definitions 1 

Start of informative comment: 2 

The following structures and formats describe the interoperable areas of the specification. There is no 3 
requirement that internal storage or memory representations of data must follow these structures. These 4 
requirements are in place only during the movement of data from a Mobile Trusted Module (MTM) to some 5 
other entity. 6 

End of informative comment.  7 

2.1 Glossary1 8 

Abbrevation Description 

AIK Attestation Identity Key. A key used to sign remote attestations. 
Defined in [2] and [3], but see differences outlined in Section 6.1.3.  

Allocated Resources A resource that is built from dedicated resources and/or allocated 
resources. 

Communications Carrier An actor that controls access to the cellular radio network through its 
engine. 

CounterBootstrap A monotonic counter in a Shielded Location that is used to provide 
version control for integrity credentials used to verify SW during 
pristine boot. This counter state is typically a global platform or engine 
variable and therefore bound to a particular class/model of platform 
or engine. 

CounterRIMProtect A monotonic counter in a Shielded Location that is used to provide 
version control for engine-specific credentials used to verify SW during 
standard boot. This counter is a local engine variable and therefore 
bound to a particular engine instance. 

Dedicated Resources Resources that automatically become available to the platform. 

Device Manufacturer (DM) An actor that controls the DM Engine (a Mandatory Engine that controls 
communications between the Trusted Engines in a platform). This 
stakeholder is responsible for the IMEI, for example, and the core 
mandatory functions of the platform. 

Device Owner An actor that controls the authorized presence of Discretionary Engines 
in a platform, normally the legal owner of the device 

Discretionary engine A trusted engine that may be present in a platform under the 
authorization of the Device Owner. 

Engine A dedicated processor or run-time environment with access to trusted 
resources that is used to run trusted services and normal services. An 
engine may consist entirely of dedicated resources or may have parts 
of it instantiated as allocated resources.  

integrityCheckRootData Data that enables verification of the stored representation of the RVAI. 

Internal Trusted Services Trusted Services residing within an engine. These measure the Normal 
Services of the engine, provide functions like storage and sealing to 
the Normal Services, and allow trusted reporting outside the engine.    

                                       
1 Other TCG technical terms are as defined in the TCG Glossary [7].  
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Mandatory Engine A DM or DO authorized trusted engine that must be present in a 
platform to maintain its trusted state. 

Mandatory Function Any function which is required to be executed, and which is required 
(by a RIM_Auth) to be verified before it is executed 

Measurement Verification 
Agent (MVA) 

The combination of a Measurement Agent and Verification Agent 
associated with at least one target object. 

Measured Resources Normal resources that have been measured by Trusted Services. 

Normal Resources Engine resources that are not supplied with an EK or an AIK. 

Normal Services Services instantiated by customizing normal resources. 

Reference Integrity Metric 
(RIM) 

A value used to validate the result of a measurement taken before 
software or hardware is loaded or initialized (for execution). Typically 
a digest of compiled software and configuration data which can affect 
the engine trust state. 

RIM_Auth An actor that signs the RIM_Certs and delegation RIM_Auth_Certs under 
its authority. 

Primary RIM Auth A RIM_Auth whose authority has been assigned directly by the RVAI. 

RIM_Auth_Cert A certificate used to validate the identity and authority of a RIM Auth, 
typically instantiated as a TPM VERIFICATION_KEY structure. 

Internal RIM_Cert A certificate containing a RIM value, generated internally in the 
platform using the MTM_INSTALL_RIM command. 

External RIM_Cert A means of securely authenticating RIM information for a given target 
object, provided by an authorized RIM_Auth.Typically this is a data 
structure that is signed by the RIM_Auth. 

RIM Conversion Agent An agent that converts the arbitrary formats of external RIM_Certs into 
the TCG-defined formats of internal RIM_Certs. 

RIM_run A value used to validate the result of a measurement taken after 
software is loaded (after the software is executing). Typically a digest 
of the image of software executing in memory. 

RIM_run Cert A certificate containing a RIM_run value. 

Root-of-Trust for 
Enforcement (RTE) 

An optional Root-of-Trust that instantiates other Roots-of-Trust in a 
trusted engine, if and when they are not available as dedicated 
resources. 

Root-of-Trust for 
Verification (RTV) 

A Root-of-Trust which is the first verification agent used when secure 
booting an engine. 

RVAI The root public key of a hierarchy of RIM_Auth public keys. 

Supplier The party that originally provided a Trusted Component for use within 
a platform, for instance a Root of Trust.  

Target Integrity Metric 
(TIM) 

Integrity Metric of a target object or component as measured by the 
measurement agent of that object. Typically this is a hash of a 
software image of the executable code of the object, along with its 
associated configuration data. 

Target Object (TO) A particular instantiation of a trusted component on a platform that is 
measured by a measurement agent (MA) to produce an integrity metric 
called TIM. 
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Trusted Component (TC) A conceptually singular, separately identifiable part of a platform or 
engine that is supplied by an authorized and authenticated provider. 
Trusted Components may be either hardware or software. They are 
active entities that are connected together through a variety of means 
to form the complete platform or engine. Trust in the component is a 
policy decision by the domain (mandatory or discretionary) owner, and 
must be supported by a provider’s RIM certificate. That is, they can be 
trusted to the extent that they are authenticated and that the 
provider (RIM_Auth) is trusted. 

Trusted Resource Engine Resources that are supplied with a unique EK or AIK 

Trusted Services Services instantiated by customizing trusted resources. 

Verification Agent A local agent of the engine stakeholder used when secure-booting an 
engine. It verifies that software about to be loaded (and executed) is 
described and authorized in a RIM_Cert 

Verified Extend A TPM_Extend that requires verification of data in a TCG-specified 
RIM_Cert, before extending that data into a PCR; the function is 
performed by MTM_VerifyRIMCertAndExtend. 

Validity List A credential containing a list of valid (RIM or RIM_Auth) external 
certificates for a particular target object. 

 1 

 2 

2.2 Representation of Information 3 

2.2.1 Endness of Structures 4 

Each structure MUST use big endian bit ordering, which follows the Internet standard and requires that the 5 
low-order bit appear to the far right of a word, buffer, wire format, or other area and the high-order bit 6 
appear to the far left.  7 

2.2.2 Byte Packing 8 

All structures MUST be packed on a byte boundary. 9 

2.2.3 Lengths 10 

The “Byte” is the unit of length when the length of a parameter is specified.  11 



TCG Mobile Reference Architecture   TCG Copyright 
Specification version 1.0    

Revision 5 26 June 2008  Page 13 of 89 
 TCG PUBLISHED 

2.3 Defines 1 

Start of informative comment: 2 

These definitions are in use to make a consistent use of values throughout the structure specifications.  The 3 
types in sections 2.3.1, 2.3.2 and 2.3.3 are reproduced here for the readers convenience. This document fully 4 
re-uses the type definitions from [2] as reproduced in Sections 2.3.1 and 2.3.2. 5 

End of informative comment. 6 

2.3.1 Basic data types 7 

Typedef Name Description 

unsigned char BYTE Basic byte used to transmit all character fields. 

unsigned char BOOL TRUE/FALSE field. TRUE = 0x01, FALSE = 0x00 

unsigned short UINT16 16-bit field. The definition in different architectures may 
need to specify 16 bits instead of the short definition 

unsigned long UINT32 32-bit field. The definition in different architectures may 
need to specify 32 bits instead of the long definition 

2.3.2 Boolean types 8 

Name Value Description 

TRUE 0x01 Assertion 

FALSE 0x00 Contradiction 

2.3.3 Structure Tags 9 

Start of informative comment: 10 

This section defines TPM_STRUCTURE_TAG values for the structures defined in this specification. The first 11 
three of these type definitions are reproduced from [5]. 12 

End of informative comment. 13 

Name Value Structure 

TPM_TAG_VERIFICATION_KEY 0x0301 TPM_VERIFICATION_KEY 

TPM_TAG_RIM_CERTIFICATE 0x0302 TPM_RIM_CERTIFICATE 

MTM_TAG_PERMANENT_DATA 0x0303 MTM_PERMANENT_DATA 

TPM_TAG_RIM_AUTH_VALIDITY_LIST 0x0305 TPM_RIM_AUTH_VALIDITY_LIST 

TPM_TAG_RIM_VALIDITY_LIST 0x0306 TPM_RIM_VALIDITY_LIST 

 14 

2.3.4 MTM structures and data types 15 

All other type and structure definitions used in this specification that are not defined in this specification are 16 
defined in [2]. 17 
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2.4 Overview 1 

 2 

This specification defines an abstract architecture of a trusted mobile platform. This specification does not 3 
define how the architecture must be implemented, but compliant implementations must have certain 4 
specified properties and functions. 5 

The scope of the specification is: 6 

• the definition of a trusted mobile platform as a collection of engines in mandatory and discretionary 7 
domains, and means for the engines to communicate with each other and with generic resources 8 

• the definition of a generic engine 9 

• the definition of a set of trusted resources required to instantiate a trusted engine 10 

At various places, the specification also refers to entities outside the mobile platform, such as a component 11 
supplier, or an engine stakeholder or other authority. Where requirements on these external entities are 12 
given, they are labeled as “ecosystem requirements”, using informative text or other notes.  13 

The mobile platform by itself cannot meet ecosystem requirements. However, certain platform components 14 
MUST be provisioned or controlled by external parties meeting ecosystem requirements, and in such cases, 15 
each platform component MUST correctly authenticate the relevant controlling party before accepting 16 
provisioning or updates.   17 

   18 
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3. Introduction 1 

Start of informative comment: 2 

Cellular-radio enabled platforms conform to regulations that govern network protocols and require 3 
unrestricted access to proper network parameters. Otherwise, a cellular-radio enabled platform cannot 4 
operate (and should not operate, for fear of disabling the network).  Regulations dictate that certain network 5 
parameters (such as the IMEI) must be unique to individual platforms. It follows that a trusted mobile 6 
platform requires guaranteed availability of specific functions with access to protected data. Conventional 7 
TCG-enabled platforms enforce the rights of a single platform Owner (who has exclusive control over the data 8 
protection mechanisms in the platform) and the rights of multiple data owners (who use the data protection 9 
mechanisms, with permission from the platform Owner). If a cellular-radio enabled platform was just a 10 
conventional TCG-enabled platform, it follows that an Owner or user who turned off his TPM would prevent 11 
the radio from operating. To maintain the right of an Owner or user to turn off his TPM, this specification 12 
generalizes the concept of a platform to mean a set of conventional TCG-enabled platforms, and calls them 13 
“engines” to differentiate them from the ensemble platform. Each trusted engine has a separate Owner, 14 
called a “stakeholder”, who has exclusive control over the data protection mechanisms in their own engine, 15 
and can permit data owners to use those data protection mechanisms. Some engines are mandatory and some 16 
are discretionary.  17 

This specification introduces functions for the secure-boot of a MTM-enabled engine. A conventional TCG-18 
enabled engine provides data protection and platform attestation. Secure-boot additionally forces the engine 19 
to boot properly or not at all. Secure-boot therefore provides an engine’s stakeholder with confidence that 20 
certain services were correctly instantiated when they are available, and is particularly valuable to entities 21 
whose engines are constrained by regulations. The extra facilities for secure-boot include an entity called the 22 
Root Verification Authority Identifier (RVAI), Reference Integrity Metric Certificates, and a Root-of-Trust-for-23 
Verification. 24 

This specification introduces mandatory engines, which are always resident in a platform and hence 25 
particularly useful for absent (remote) stakeholders. The term “mandatory engines” comes from the fact that 26 
they provide mandatory (critical and indispensable) services, including services subject to regulatory 27 
enforcement 28 

This specification introduces discretionary engines, which may or may not be resident in a platform. The term 29 
“discretionary engines” comes from the fact that they provide discretionary (non-critical) services. 30 

This specification also introduces the concept of the role of a Device Owner, which has exclusive control over 31 
the presence in the platform of discretionary engines and mandatory engines that provide critical and 32 
indispensable services but are not subject to regulatory enforcement.  33 

Current phone implementations often split a baseband processor (which controls the radio unit, radio 34 
software, voice functions, interactions with SIM card etc.) from an applications processor (which has a fully 35 
fledged OS and does all user-visible interactions: menus, icons, camera, multimedia, music player, web 36 
browser, messaging and so on). 37 

This specification introduces the concept of a secure-boot mandatory Device Manufacturer (DM) engine. This 38 
might do all baseband processor and applications processor functions in a simple platform. In a more complex 39 
platform, however, the DM engine might just control the basic hardware and interfaces. The DM stakeholder 40 
could be the Mobile Equipment manufacturer, for example. 41 

This specification introduces the concept of a Communications Carrier engine that could eventually be both 42 
secure-boot and mandatory, and perform the functions currently executed by the baseband processor: it 43 
would be capable of being upgraded with new radio protocols, patches, enhancements and so on. The 44 
Communications Carrier engine must obviously be strongly isolated from most of the other applications on the 45 
platform to prevent undesirable results such as incompatible protocols, interference, radio hijacking, for 46 
example. The Communications Carrier stakeholder could be the cellular network provider, for example. 47 

This specification introduces the concept of a Service Provider engine that could eventually perform some of 48 
the user-visible functions currently done by the applications processor. Discretionary Service Provider engines 49 
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could do specific functions (music player, web browser, and messaging, for example) currently done by the 1 
applications processor. 2 

Cellular-radio enabled platforms are also often embedded implementations. This specification therefore 3 
includes concepts intended to enable implementation of embedded mobile platforms. These concepts include 4 
dedicated and allocated resources, and a Root-of-Trust-for-Enforcement. 5 

 6 

This specification is intended to achieve the following high-level security properties:  7 

1) The phone manufacturer and other remote entities (especially mobile network carriers) require the ability 8 
to control certain key operational aspects of the phone.   9 

2) Physical access by a user to a mobile platform (e.g. a person holding a phone) does not imply that the user 10 
may access all of the features and capabilities of that phone (e.g. connecting to a mobile network).   11 

3) Users with physical access to the phone do have the right to control certain phone resources (e.g. while 12 
they cannot change the overall device identity for legal reasons, they can change the identity presented by 13 
various applications and services to protect their privacy). 14 

 15 

The following security and usability goals have been defined.  For each goal, corresponding mechanisms (*) 16 
are envisioned to assist in attaining the security goals: 17 

1) There are tamper-resistant elements in the phone 18 

 - Goal: The phone must have protected capabilities that are hard to tamper with by a physically present user 19 

* There must be one or more Roots of Trust (RoT) that are difficult to undermine using physical access and/or 20 
post-initialization software. Some of these RoT constitute the MTM.  21 

2) Boot must be tamper-resistant 22 

 - Goal: In order to bootstrap security on the platform, the RoT must manage/control the boot process. 23 

* The standard defines two sets of RoTs that establish secure operations in different ways.    24 

    ** One set consists of just one element, the Root of Trust for Enforcement (RTE), which is able to build 25 
other RoTs if they do not exist as dedicated resources.   26 

    ** The other set consists of four elements, the RoT for Storage (RTS), the RoT for Reporting (RTR) and the 27 
RoT for Measurement (RTM) (which have been previously defined by the TPM WG) and the RoT for 28 
Verification.  The first three RoT together allow an entity with access to the machine to verify with 29 
confidence that certain events occurred when the platform was started.  The final RoT, the RTV, ensures that 30 
the platform will continue to operate only if the correct conditions are present.  31 

3) The first code that runs on the phone is controlled by the device manufacturer. Other remote entities 32 
control the first code running in their portion of the phone (their own engine).   33 

 - Goal: The phone can only be used (booted) under conditions allowed by the remote entities. 34 

* Prior to release to the end user, the phone is set up with initial boot code that always runs first. 35 

4) Boot succeeds only with known boot code 36 

 - Goal: Operation of the phone for all purposes related to device usage/remotely-owned engines must be 37 
ultimately controlled by the device manufacturer/other remote owners respectively 38 

* The initial boot code, when run, will ensure that subsequent code that is run is only run under conditions 39 
specified by the manufacturer/remote owner(s). 40 
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* This is achieved by the RTV comparing the code that is run to previously known good code before passing 1 
execution control to that code. 2 

5) Known boot code must be protected against tampering 3 

 - Goal: A physical user should not be able to modify the known boot code that the RTV will accept. 4 

* Known boot code is integrity protected by a cryptographic key (the key may be symmetric or asymmetric) 5 
that is not known to the physical user, so the physical user cannot create protected boot code without 6 
assistance.  This is essentially a digital certificate for the code. 7 

* The verification key is in shielded memory, so the physical user cannot change the verification key. 8 

* The boot code is only executed if the boot code is verified with the verification key. 9 

6) Secondary verification entities (i.e. not RoT code) must be able to verify further code, to which they in 10 
turn pass execution. 11 

 - Goal: There is a chain of trust from the RTV up to the final applications that are loaded and run. 12 

* New “certificates” can be created that build on the measurements used by the previous verification entity.  13 
This uses the traditional RTM, RTS, RTR mechanisms along with a “certificate chain” that allows trust to be 14 
built from the RTV while preventing tampering of the measurements made previously 15 

7) Certificates might be generated locally or remotely to allow for better flexibility. 16 

 - Goal: In order to allow for different types of implementations, certificates can be loaded in or built on the 17 
platform. 18 

* There are two verification hierarchies defined: 19 

    ** One hierarchy is built using an internal key when authorized by the owner of each engine 20 

    ** The other hierarchy is built from an external base key that can be set by the owner of each engine 21 

8) Watchdog processes must be able to continue to verify that the correct code is still running. 22 

 - Goal: Code which could undermine engine security does not execute without detection after a secure boot. 23 

* A process that can “read” other running processes can verify that their measurement still matches what is 24 
expected (e.g. what is stored in the MTM) 25 

9) The platform must protect against replay. 26 

 - Goal: As more and more certificates are created, there must be a way to revoke trust. 27 

* The MTM must have (within cost constraints) secure monotonic counters 28 

* The secure monotonic counters are checked against counter values embedded in certificates 29 

10) The platform must allow for revocation of old certificates. 30 

 - Goal: If the trust of measured code changes, there must be a way to no longer accept the code as "trusted". 31 

* Incrementing the counter is one mechanism to enable revocation 32 

* Revocation may also be implemented by using Validity Lists 33 

11) The platform must have a default secure state if security issues occur. 34 

 - Goal: There must be a default secure implementation when revocation or other security events occur. 35 

* Pristine boot is defined to allow the system to get into a trusted state on the very first boot, and return to a 36 
trusted state when all else fails 37 

End of informative comment. 38 
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4. Reference Architecture for Mobile Trusted Computing 1 

4.1.1 Architecture Overview 2 

Start of informative comment: 3 

This specification abstracts a trusted mobile platform into a set of trusted engines, meaning constructs that 4 
can manipulate data, provide evidence that they can be trusted to report the current state of the platform, 5 
and provide evidence about the current state of the platform. This abstraction enables designers to 6 
implement platforms using one or more processors, each processor supporting one or more engine. 7 

End of informative comment 8 

Internal engine operation may be independent of other engines, or a superior engine may provide resources 9 
for a subordinate engine. If a superior engine provides resources to a subordinate engine, and the superior 10 
engine is working normally, those resources MUST conform to their published properties. If a superior engine 11 
provides resources to implement Protected Capabilities and/or Shielded Locations in a subordinate engine, 12 
and the superior engine is working normally, those resources MUST be compatible with the properties of 13 
Protected Capabilities and Shielded Locations defined in the TPM Main Specification Part I section 3 [1]. 14 

Start of informative comment: 15 

 16 
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 32 

 33 

Figure 1. Generic Trusted Mobile Platform 34 

A trusted mobile platform, shown in Figure 1, contains multiple abstract engines, each acting on behalf of a 35 
different stakeholder. Stakeholders are role-playing entities. 36 

End of informative comment 37 

An entity MAY perform one or more stakeholder roles. 38 

 39 
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Start of informative comment: 1 

The principle stakeholders in a trusted mobile platform are: 2 

• Users, who store their data in the platform. There may be multiple User stakeholders in a platform. 3 
An employee or a consumer may be a User stakeholder, for example.  4 

• Service Providers, who provide services consumed in a platform. There may be multiple Service 5 
Provider stakeholders in a platform. Some examples of services are: corporate services for 6 
employees; content distribution services for consumers; an address book; a diary. 7 

• Communications Carriers, who are specialist Service Providers providing cellular radio access for the 8 
platform. There may be multiple Communications Carrier stakeholders in a platform.  9 

• The Device Manufacturer, who provides the internal communications within a platform and typically 10 
provides all the hardware resources within a platform. There is a single Device Manufacturer 11 
stakeholder in a platform. 12 

An engine’s purpose is to enable confidence in all the services exported and consumed by the engine. The 13 
engine enforces policies: the engine’s resources constrain what the engine can do, and the engine’s Owner 14 
(its stakeholder) constrains how the engine can be used. Each engine is isolated from other engines. The 15 
resources of these engines are provided by the platform or another engine. The isolation of these engines 16 
depends on the integrity of the platform and the integrity of the platform may depend on the isolation of 17 
these engines. This specification does not mandate a specific form or strength of isolation, which should 18 
depend on the purpose of the trusted mobile platform. Normal processes, threads and sandboxes may be 19 
sufficient. More sophisticated techniques such as virtual machines, hypervisors and the like may be required. 20 

Each stakeholder has its own engine. Each engine provides platform services on behalf of its stakeholder. A 21 
Device Manufacturer’s engine is responsible for the integrity and configuration of a device, including the 22 
presence of mandatory engines and specified discretionary engines in the platform, coordinating 23 
communications between engines in the platform, and controlling access to protected platform resources. In 24 
one example, in a general case, a Communications Carrier’s engine is responsible for AAA (Authentication, 25 
Authorization, Access control) services related to network access and a User’s engine consumes services 26 
provided by other engines and protects data on behalf of a user of a device.  27 

A trusted mobile platform has both a mandatory domain and a discretionary domain. 28 

The Device Manufacturer actor determines some of the engines in the mandatory domain. This specification 29 
also defines the role of a Device Owner, which determines the remaining engines in the mandatory domain 30 
and determines all engines in the discretionary domain. This role is NOT the same as a stakeholder, who owns 31 
an individual engine.  However, the role will generally be performed by the legal owner of the Device, and 32 
that legal owner may in fact be a stakeholder for an engine. 33 

Mandatory engines provide the indispensable functionality of a trusted mobile platform, especially those 34 
functions required to comply with regulations governing the operation of mobile platforms in cellular radio 35 
systems. Mandatory engines are required to be supported by a Mobile Remote owner Trusted Module (MRTM), 36 
which supports secure boot and does not permit a local Operator to remove the stakeholder from the engine.  37 
The intent is to ensure that the correct services are always present in a platform. Mandatory engines 38 
therefore require a stakeholder that will ensure that the Roots of Trust in a mandatory engine are always 39 
enabled and activated. 40 

Discretionary engines provide services that must be capable of being added, removed, turned on and turned 41 
off without consent of any external service provider. Discretionary engines are required to be supported by a 42 
Mobile Local owner Trusted Module (MLTM), which is not required to support secure boot and does permit a 43 
local Operator to remove the stakeholder from the engine and become the stakeholder of the engine. The 44 
Device Owner is responsible for ensuring that all discretionary engines and their stakeholders conform to the 45 
Device Owner’s privacy policy.  46 

An engine may support multiple services to reduce the overhead from multiple engines, and the stakeholder 47 
may allow some of the services within a single engine to be selectively turned on and turned off. 48 
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Both mandatory and discretionary engines are implicitly capable of protecting data, irrespective of 1 
stakeholder. This is because the fundamental architectural properties of TCG technology prevent any 2 
engine’s stakeholder subverting an engine’s Protected Storage facilities. Therefore it does not matter who is 3 
an engine’s stakeholder if the only concern is data protection. Data could be protected in separate isolated 4 
engines in a platform, or in separate isolated compartments in the same engine in a platform. As a result, 5 
only one mandatory engine with the entity performing the Device Manufacturer role as stakeholder is strictly 6 
necessary to provide services subject to regulatory enforcement, only one mandatory engine with the entity 7 
performing the Device Owner role as stakeholder is strictly necessary to provide other indispensable 8 
functionality, and only one discretionary engine with the entity performing the Device Owner role as 9 
stakeholder is strictly necessary to provide discretionary functionality. It may be more convenient or more 10 
efficient, however, to provide multiple engines than to provide multiple compartments in a single engine. 11 
That is why this specification permits multiple mandatory and discretionary engines. 12 

The Device Manufacturer and the Device Owner permit the presence of engines in the platform via three 13 
separate lists (DM_mandatoryEngineList, DO_mandatoryEngineList, DO_DiscretionaryEngineList) enforced by 14 
the Device Manufacturer’s engine. Every engine in the platform must appear in exactly one list. Not all 15 
platforms need all lists. 16 

An engine should be allocated to either a mandatory list or the discretionary list depending on the (main) 17 
service provided by the engine. If a service is essential, it should be in a mandatory list. If a service is not 18 
essential, it should be in the discretionary list. A handset manufacturer needs at least one engine in the 19 
DM_mandatoryEngineList if the DM’s engine does not provide all the services needed to satisfy regulations, 20 
for example. A corporation needs at least one engine in the DO_mandatoryEngineList if the corporation 21 
wishes to install services that are essential for employees, for example.  An employee needs at least one 22 
engine in the DO_discretionaryEngineList to install non-critical services in a phone provided by his employer, 23 
for example. A parent needs at least one engine in the DO_mandatoryEngineList to install essential services in 24 
a child’s phone, for example.  A child needs at least one engine the DO_DiscretionaryEngineList to install 25 
games in a phone, for example. 26 

End of informative comment 27 

Engines in the DM_mandatoryEngineList MUST provide services subject to regulatory enforcement, MUST NOT 28 
provide indispensable services that are not subject to regulatory enforcement, and MAY provide non-critical 29 
services whose access to TCG functionality (i.e. Trusted Services) can be denied by the local Operator.  30 

Engines in the DO_mandatoryEngineList MUST NOT provide services subject to regulatory enforcement, MAY 31 
provide indispensable services that are not subject to regulatory enforcement, and MAY provide non-critical 32 
services whose access to TCG functionality can be denied by the local Operator. 33 

Engines in the DM_mandatoryEngineList and DO_mandatoryEngineList MUST NOT facilitate interference by 34 
local operators with their service’s access to TCG functionality.  Each Engine in the DM_mandatoryEngineList 35 
and DO_mandatoryEngineList MUST have a Mobile Remote-owner Trusted Module (MRTM), whose Owner (see 36 
Section 6.2.1) is the stakeholder of that engine. The MRTM of an engine can be built based on an MLTM, TPM 37 
v1.2 or even TPM v1.1. 38 

Engines in the DO_discretionaryEngineList MUST NOT provide services subject to regulatory enforcement, 39 
MUST NOT provide non-regulatory indispensable services, and MAY provide non-critical services whose access 40 
to TCG functionality can be denied by the local Operator. 41 

Each Engine in the DO_discretionaryEngineList MUST have a Mobile Local-owner Trusted Module (MLTM), 42 
whose Owner (see Section 6.2.1) is the stakeholder of that engine. An Engine’s MLTM can be built using a TPM 43 
v1.2 or even a TPM v1.1. 44 

Start of informative comment: 45 

The Device Manufacturer’s engine enforces the lists and controls the presence of engines in both 46 
discretionary and mandatory domains, and the interactions of those engines. The nature of the lists is 47 
manufacturer-specific. Lists could be simple lists or sophisticated control surfaces that enforce policies, for 48 
example. Lists might need to be modified post-manufacture. The DM_mandatoryEngineList might be modified 49 
if a DM is sold through a specific Communications Carrier or Service Provider, subject to contract, and then 50 



TCG Mobile Reference Architecture   TCG Copyright 
Specification version 1.0    

Revision 5 26 June 2008  Page 21 of 89 
 TCG PUBLISHED 

modified again if the Device changes Communications Carrier or Service Provider (e.g. because the contract 1 
has expired).   2 

End of informative comment 3 

The Device Manufacturer MUST have ultimate control over the list of engines in the DM_mandatoryEngineList. 4 

The Device Owner MUST have ultimate control over the list of engines in the DO_mandatoryEngineList. This 5 
control mechanism MUST be separate from that used to control the DO_DiscretionaryEngineList. 6 

The Device Owner MUST have ultimate control over the list of engines in the DO_discretionaryEngineList. This 7 
control mechanism MUST be separate from that used to control the DO_ mandatoryEngineList. 8 

Engines MUST appear in exactly one of the DM_mandatoryEngineList, the DO_mandatoryEngineList, or the 9 
DO_discretionaryEngineList. One engine on the DM_mandatoryEngineList MUST be the Device Manufacturer's 10 
(DM's) own engine. It is RECOMMENDED that the lists support at least three further engines, for a User, 11 
Communications Carrier and Service Provider.  12 

The Device Manufacturer’s engine MUST permit engines in the DM_mandatoryEngineList, 13 
DO_mandatoryEngineList, and DO_discretionaryEngineList to communicate with other engines in the platform 14 
and access generic resources provided by the DM’s engine. Engines in the DM_mandatoryEngineList MUST be 15 
booted. Engines in the DO_mandatoryEngineList and DO_discretionaryEngineList should be booted, and failure 16 
to boot them MUST be treated as a serious error. In the event of such an error, the DM’s engine MUST take 17 
appropriate manufacturer-specific action.  18 

The DM’s engine MAY use an integrity challenge to determine whether an engine is working properly. 19 

Start of informative comment: 20 

Figure 2Error! Reference source not found. illustrates that engines in the domains are able to communicate 21 
(shown by thick lines) with each other and access generic services provided by the Device Manufacturer’s 22 
engine. 23 

 24 
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Figure 2. Domains in a Trusted Mobile Platform  1 

The architecture of an engine reflects the fact that there are only two ways by which a resource can be 2 
trusted. 3 

• Trusted Resources: The first way is when an entity vouches for a specific instantiation of a resource 4 
that contains a specific Endorsement Key and / or Attestation Identity Key. This requires the resource 5 
to keep that EK and / or AIK secret. TCG calls such resources “Roots-of-Trust (RoT)”.  6 

• Measured Resources: The second way is when one reliable entity measures an instantiation of a 7 
resource and provides that measurement, and (another) reliable entity vouches for the resource by 8 
providing a reference measurement. TCG uses RoTs to make the first measurements and provide 9 
measurements, while other entities provide reference measurements. Measurement enables the use 10 
of resources that are unable to be provided in a way that can guarantee protection of an EK or AIK, or 11 
resources whose suppliers do not wish the overhead of providing protection for an EK or AIK. 12 
Measurement therefore enables a generic instantiation of a resource to be trusted. 13 

Any part of a platform that is invariant (or can be changed only by the proper entity) could use a pre-installed 14 
EK or AIK and associated credentials (see Section 6.1) to prove that it is genuine. That part need not make or 15 
supply any measurements to prove that it is genuine. It simply needs to use its AIK(s) to sign information. A 16 
platform with an invariant Device Manufacturer’s engine, for example, could use this method to prove that 17 
the Device Manufacturer’s engine is genuine.  A platform with invariant arbitrary services, for example, could 18 
use this method to prove that those services are genuine.  The disadvantage of this approach is that a larger 19 
part of a platform needs to undergo a security assessment. This TCG architecture, on the other hand, defines 20 
just the minimum set of generic Trusted Services that are necessary to measure other resources and services. 21 
This TCG approach is simpler because: (1) the same generic Trusted Services can be used no matter what 22 
normal service is provided; (2) while the generic Trusted Services still require a security assessment, 23 
measured resources and services require just a trust assessment. 24 

Engines may be instantiated using any combination of dedicated or allocated resources. Dedicated resources 25 
automatically become available to the platform after power is applied to the platform, albeit often after a 26 
short delay. A dedicated resource enters a usable state of its own accord. The internal operations of 27 
dedicated resources are implicitly isolated from other dedicated resources and from virtual resources. 28 
Dedicated resources are inherently parallel, in the sense that they all exist at the same time. Some examples 29 
of dedicated resources are hardware / firmware devices such as analogue circuits, solid-state memories, 30 
hardware processors, and programmable engines that automatically load firmware to implement particular 31 
(fixed) functions. 32 

Any stand-alone trusted mobile platform always needs at least some dedicated resources where data can be 33 
protected from attack, but the instantiation of those resources is vendor specific. Dedicated resources, 34 
including Roots of Trust, may be fixed (immutable) or may be capable of being changed. 35 

End of informative comment 36 

If a dedicated RoT can be changed, it MUST verify evidence of sufficient privilege to perform an alteration 37 
(before permitting the alteration). 38 

Start of informative comment: 39 

This implies that mutable RoTs must include means to protect and maintain the information used to recognise 40 
evidence of privilege. 41 

Dedicated resources may include a monotonic counter that can be regularly incremented, yet never roll-over 42 
during the intended life of the platform. A monotonic counter appears essential for verifying that the current 43 
state of an engine is the most recent state of an engine. 44 

Allocated resources are functions that do not exist in the platform in a particular boot cycle unless dedicated 45 
resources and / or other allocated resources take specific action to create and maintain the resource after 46 
power is applied to the platform. Obviously, there must be enough dedicated resources to instantiate 47 
allocated resources. 48 
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End of informative comment 1 

If some resources are allocated, at least one dedicated resource MUST be responsible for ensuring that 2 
mandatory allocated resources are instantiated. 3 

Start of informative comment: 4 

The degree of isolation of internal operations of allocated resources depends on the construction of the 5 
resource. Allocated resources may be serial, in the sense that not all allocated resources might exist at the 6 
same time. Some examples of allocated resources are the boot software environment created by an 7 
Operating System, a virtual machine, and a function implemented in a software application.  8 

One advantage of “dedicated / allocated” terminology is that it enables concise description of all possible 9 
implementations of Roots-of-Trusts (RoTs): 10 

• An allocated RoT must be described in terms of measurements made by a trusted building entity. 11 

• An allocated RoT and its trusted builder can together be described as a dedicated RoT. 12 

• A dedicated RoT is one that is not described in terms of measurements, and therefore must have an 13 
Endorsement Key and / or Attestation Identity Key and associated credentials. 14 

The EK and the AIK are defined in the TCG specifications “TPM Main Part 1 Design Principles”[1], “TPM Main 15 
Part 2 TPM Structures”[2], and “TPM Main Part 3 Commands” [3]. The credentials are defined in the TCG 16 
specification “Credential Profiles” [6]. 17 

End of informative comment 18 

Every stand-alone set of dedicated RoTs MUST have either: 19 

o an Endorsement Key, Endorsement Credential, Platform Credential, and Conformance Credential 20 

or 21 

o an Attestation Identity Key and AIK Credential 22 

as evidence that they are genuine.  23 

 24 

Start of informative comment: 25 

Trusted Resources need an EK and associated credentials if they will obtain AIK credentials from entities 26 
outside the platform. Dedicated resources that build allocated Trusted Resources need an EK or AIK and 27 
associated credentials for use by those allocated Trusted Resources. If Trusted Resources in one engine are 28 
exported services from another engine, these EK-associated-credentials can be signed by an AIK belonging to 29 
the exporting engine. If imported Trusted Resources are exported Trusted Resources from another engine, 30 
and only ever obtain AIK credentials from the exporting engine, they don’t need an EK. This is because the 31 
exporting engine does not need to be convinced that the resource is genuine. An engine that exports a 32 
Trusted Resource is implicitly able to check that an AIK is a genuine AIK and simply signs the requested AIK 33 
credential using one of its own AIKs. 34 

Engines may or may not need to undergo a boot sequence before being operational. Engines could be 35 
instantiated as complete (finished) engines, or as incomplete engines that must finish booting before they are 36 
operational. No matter whether resources are dedicated or allocated, or whether the engine is instantiated 37 
complete or incomplete, defined mandatory functions must always be present and proper and correct in a 38 
completed engine. 39 

Each engine in a trusted mobile platform is provided with the resources necessary to do its job, consumes the 40 
services it is designed to consume, and exports the services that it is designed to export. Each engine includes 41 
some selection of functions for: (1) reporting evidence (credentials) for the engine’s trustworthiness; (2) 42 
reporting the evidence (measurements: Platform Configuration Register - PCR - values and event log) about 43 
the engine’s current state; (3) obtaining and using Attestation Identity Keys; (4) providing Protected Storage 44 
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for use by the engine; and (5) other TCG trusted platform functions (time stamping, delegation, etc.) that 1 
may be required by that particular engine.  2 

Each engine has many of the same characteristics of a conventional stand-alone TCG platform. 3 

• Each engine has some Protected Capabilities and Shielded Locations, used to implement 4 
Trusted Service functions that must not be subverted. 5 

• Each engine could clean-up and continue to persist after processing sensitive data (a static 6 
engine), or could shut-down after processing sensitive information (a dynamic engine). Static 7 
engines must be designed so that the previous history of the engine does not affect 8 
confidence in future processing by the engine. In a dynamic engine, the previous history of 9 
the engine is irrelevant but there is a cost due to dynamic creation and destruction of 10 
engines. 11 

• Each engine can use attestation identities to prove that information originated in a trusted 12 
platform. Each engine’s stakeholder controls the use of any EK and any AIKs belonging to that 13 
engine. This does not disenfranchise the Device Owner, who either becomes the stakeholder 14 
of engines or delegates that privilege to entities that will uphold the Device Owner’s privacy 15 
policies.  The DO always retains the ultimate sanction of expelling any misbehaving non-16 
regulatory engine from the platform, via the DO_mandatoryEngineList and the 17 
DO_DiscretionaryEngineList 18 

• Each engine has access to a set of Roots-of-Trust. It can use them to make measurements on 19 
“Normal Services” (thereby creating “Measured Services”), and reliably report those 20 
measurements to third parties which can then decide whether to trust the service.  21 

• Each engine has access to a Protected Storage facility, with a Storage Root Key (SRK) and 22 
subsequent hierarchy. Each engine may provide its Measured Services with access to that 23 
Protected Storage. Then arbitrary data may be encrypted within the engine and the keys 24 
stored in Protected Storage. Arbitrary keys may be stored in Protected Storage and used for 25 
signing without leaving Protected Storage. 26 

• Each engine may have the ability to delegate Owner privilege within the engine. This is 27 
essential if the engine is to be able to prove Owner privilege in the absence of the Owner. 28 

• Each engine may implement other conventional TCG functions, such as time stamping, access 29 
to long-term protected non-volatile data storage, and the ability to create transport sessions. 30 
The presence or absence of extra functions depends on the intended functionality of the 31 
engine’s Measured Services. 32 

Some features peculiar to engines in a mobile trusted platform are: 33 

• The Device Manufacturer’s engine coordinates communications between the other engines, 34 
including the discovery and announcement of all engines within the platform. 35 

• The Device Manufacturer’s engine could operate as an internal Privacy-CA. AIK credentials are 36 
obtained from a Privacy-CA (as usual). Allocated engines manufactured by the Device 37 
Manufacturer’s engine could use the Device Manufacturer’s engine as an internal Privacy-CA, 38 
instead of contacting an external Privacy-CA. 39 

• Identity privacy may not always be necessary. Cellular networks unambiguously authenticate 40 
both subscribers (using e.g. USIM) and platforms (using e.g. IMEI–code). If a trusted mobile 41 
platform is designed to identify itself only to a cellular network, there is no privacy 42 
advantage from EK-based AIK enrollment, and such a platform can be issued with preassigned 43 
AIKs (instead of an EK). It follows that a DM engine may be pre-installed with an EK and 44 
associated credentials, or may be pre-installed with an AIK (or AIKs) and associated 45 
credential. 46 
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Both EK and AIKs are still necessary if engines require privacy when signing information. This 1 
is the case, for example, if an engine is designed to communicate with multiple entities and 2 
there is no legal requirement to unambiguously identify the engine to all those entities. 3 

End of informative comment 4 

If a trusted engine boots, it MUST always use an authenticated boot mechanism, so integrity metrics are 5 
available once the platform has booted.  6 

Start of informative comment: 7 

If a platform uses secure boot, there are two fundamental phases. The first phase starts with engine 8 
initialization and ends when an engine is able to protect itself against subversion. During the first phase, 9 
software must always be verified before it is executed. Otherwise the engine may be subverted. Typically a 10 
fully-linked list of software is required. The second phase starts when an engine is able to protect itself 11 
against subversion and continues until the platform is reinitialized. During the second phase, it is unnecessary 12 
to check all software before execution. The software might not be checked, or the platform state before 13 
execution of the most recent software, plus the most recent software, could both be verified. Alternatively, 14 
the platform state after execution of the most recent software could be verified.  15 

This specification does not mandate any particular secure boot mechanism. A particular secure boot 16 
mechanism may, however, incorporate the following basic states:  17 

� Engine Reset. This is the state from which an engine starts. No services are running in the engine 18 
(e.g. no software is running). All volatile memory is reset. The engine transitions from the Engine 19 
Reset state to the Engine RoT Initialization state. 20 

� Engine RoT Initialization, where the engine ensures that the RoTs are operational. If a RoT is built 21 
from dedicated resources, it must indicate that it has passed self test. If a RoT is built from allocated 22 
resources, it must be properly built by a trusted resource and may (in some circumstances) be 23 
measured. This topic is discussed in more detail in section 4.1.3 “The Roots of Trust”. When the RoTs 24 
are operational, the engine transitions to the Engine-Loading state.  Otherwise the engine must 25 
transition to the Engine Failed state.  26 

� Engine-Loading. In this state the engine loads programs (such as components of an OS or hypervisor) 27 
and verifies each program before loading it. Verification is necessary because the platform is not yet 28 
in a state where it can isolate existing process from new programs. If the engine fails to verify a 29 
program being loaded then the engine will either transition to the Engine Failed state or attempt to 30 
avoid the failure by following an alternative execution path. When the engine is in a state where it 31 
can isolate processes, the engine transitions to the Engine-Verified state.  32 

� Engine-Verified. In this state the engine is operating according to policy. If the engine loads a 33 
program that affects the isolation abilities of the engine, the engine must first transition to the 34 
Engine-Loading state. Otherwise, if the engine loads a program that does not affect the isolation 35 
abilities of the engine, the engine can remain in the Engine-Verified state. 36 

� Engine Failed. In this state all trusted resources must be operational and configured, but the engine’s 37 
capabilities may be deliberately restricted. Some remedial action, such as a reboot, may be 38 
necessary before the engine is once again operating according to policy.  39 

The requirement necessary to support the Engine-Loading state is that all software executed on an engine 40 
before the engine can isolate existing processes from new processes, and vice versa, must be verified before 41 
execution. The companion specification “TCG Mobile Trusted Module Specification” describes primitives that 42 
may be used to record verification of a fully-linked list of software. 43 

End of informative comment. 44 

All software executed on a secure-boot engine before the engine can protect existing processes from new 45 
processes, and vice versa, MUST be authenticated before execution.  46 

Start of informative comment: 47 
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A simple credential called a Reference Integrity Metric (RIM) certificate is used to describe an approved state 1 
of a platform and / or approved integrity metrics. A RIM certificate can be used to: (1) verify software; (2) 2 
verify the state of a platform and verify software before executing the software; (3) verify the state of a 3 
platform.  4 

Until mobile trusted platforms are the norm, it is anticipated that RIMs will be delivered to platforms in 5 
“external” certificates, via proprietary or extant protocols, and with proprietary or extant certificate 6 
formats. When a platform receives an external certificate, a RIM conversion agent verifies the external 7 
certificate and converts it to an internal certificate. The conversion from external to internal involves checks 8 
that defend against a variety of other attacks. Converting to an internal certificate with a TCG-defined 9 
format has two advantages: (1) verifying an internal certificate is simpler than verifying an external 10 
certificate because less attacks can be mounted on internal certificates and hence less defenses are required; 11 
this reduces the total time to verify frequently used RIM certificates; (2) eventually, when mobile trusted 12 
platforms are the norm, a standardized infrastructure protocol could deliver (external) RIM certificates with 13 
internal certificate formats.  14 

External RIM certificates require a platform to store a global monotonic counter value as a defense against 15 
off-line replay attacks. 16 

Internal RIM certificates are customised for a particular platform by replacing all external RIM certificate 17 
protective data with internal RIM protective data. (This involves a current monotonic counter value and a 18 
signature value using the engine’s internal verification key, stored in the engine’s RTS.) 19 

End of informative comment 20 

External certificates MUST be used when corresponding internal certificates are unavailable: when a secure-21 
boot engine boots for the first time and has not yet reached the stage when it can execute a RIM conversion 22 
agent, for example.  23 

Each RTS in a secure-boot engine MUST have access to at least one persistent key that is the root of a key 24 
hierarchy for verifying a RIM_Auth certificate hierarchy. Each key in the key hierarchy MUST be used to verify 25 
other keys or a RIM certificate (though there MAY be unused leaf keys). The root key MUST be either 26 
immutable or MUST be used to verify its replacements. The RTS MUST store either the root key or a means to 27 
recognize the root key (its digest, for example). 28 

Start of informative comment: 29 

The root key or its digest can be embedded in an RTS (during manufacture, for example) if the RTS has 30 
protected non-volatile memory. Alternatively, the root key or its digest can be loaded into the RTS during 31 
platform boot, before rogue software can execute on the platform. This enables the root key or its digest to 32 
be stored in protected non-volatile memory outside the RTS, and loaded into protected volatile memory 33 
inside the RTS every boot cycle. 34 

The RTS has a record of dedicated PCRs that can be extended only with a field from a verified RIM 35 
certificate. The list of these dedicated PCRs can be embedded in an RTS (during manufacture, for example) if 36 
the RTS has protected non-volatile memory. Alternatively, the list can be loaded into the RTS during platform 37 
boot, before rogue software can execute on the platform. This enables the list to be stored in protected non-38 
volatile memory outside the RTS, and loaded into protected volatile memory inside the RTS every boot cycle. 39 

Certain dedicated PCRs can be extended only with a field in a verified RIM certificate. Specifically, a RIM 40 
certificate can contain a digest, a PCR index, a PCR_COMPOSITE value, and a signature value. If the signature 41 
value is verified using an internal RIM verification key or a key from the RIM certificate hierarchy, AND the 42 
current MTM PCR values match the stated PCR_COMPOSITE value, THEN the RTS will extend the digest value 43 
into the PCR with the PCR index. This primitive has two desirable properties. 44 

• It simplifies recognition of an engine that has (or had) a particular software state: a RIM 45 
certificate can contain a digest of a signed statement (instead of a digest of an actual 46 
measurement) and a PCR_COMPOSITE value indicating a particular boot process. Any PCR that 47 
was extended via that RIM certificate is therefore a reliable indication that the engine had a 48 
particular software state, such as completion of a particular boot process, and can be verified 49 
by checking the signature on the statement that was extended into the PCR. Data can be 50 
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sealed to that single PCR, and the value of that single PCR can be reported in an integrity 1 
challenge. If the boot process is modified, the PCR_COMPOSITE value in the authorizing RIM 2 
certificate must change but sealed data and remote attestation does not change. Note that 3 
this property is independent of whether an engine is secure-boot. 4 

• It is a locality mechanism that prevents Denial-of-Service attacks on selected PCRs during the 5 
second phase of a secure boot process: those selected PCRs cannot be extended unless the 6 
integrity metric is approved and the engine is in the approved state.  7 

End of informative comment 8 

4.1.2 Reference Engine 9 

Start of informative comment: 10 

Each fully booted engine in a trusted mobile platform is an adaptation of a single generic engine, shown in 11 
Figure 3Error! Reference source not found.. 12 

 13 

 14 
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Figure 3. Generic Engine 31 

In Figure 3Error! Reference source not found., the solid rectangles indicate interfaces, the solid heavy 32 
arrows indicate dependency, and the dotted heavy arrows indicate optional dependency (in both cases the 33 
arrow pointing away from the dependant entity). Services are based on Resources or other Services. 34 
Resources are either provided within an engine or provided as a service by another engine.  35 

The Trusted Resources are: 36 

• A Root-of-Trust-for-Measurement (RTM), which performs the measurement functionality as 37 
defined in the TPM Main Specification. 38 
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• A Root-of-Trust-for-Storage (RTS), which provides PCRs and Protected Storage for an engine. 1 
The RTS stores the measurements made by the Root-of-Trust-for-Measurement (or its 2 
subsequent measurement agents), cryptographic keys, and security sensitive data. 3 

• A Root-of-Trust-for-Reporting (RTR), which reports the measurements stored by the Root-of-4 
Trust-for-Storage by signing them with cryptographic signature keys stored by the Root-of-5 
Trust-For-Storage. 6 

• A Root-of-Trust-for-Verification (RTV), which checks measurements against reference 7 
integrity metrics before they are extended into the RTS. The RTV may verify the 8 
measurements of the current state of other engines. The RTV can reliably verify a measured 9 
integrity metric against a RIM, and extend the integrity metric into a Platform Configuration 10 
Register (PCR) 11 

• A Root-of-Trust-for-Enforcement (RTE), which is responsible for building all the Roots-of-Trust 12 
in its own engine which are based on allocated resources. The RTE is described in more detail 13 
in section 4.1.3 “The Roots of Trust” of this specification. 14 

Not all engines necessarily have all Roots-of-Trust. An engine would need an RTE to guarantee that allocated 15 
RoTs will be booted, but not otherwise. An engine would need an RTV to guarantee that mandatory allocated 16 
resources are running properly, for example, but not necessarily otherwise. An engine always, however, 17 
needs an RTM, RTS and RTR because they are required for measurement and reporting of integrity metrics. 18 

End of informative comment 19 

RoTs MUST be dedicated RoTs or allocated RoTs or services (interface #3) exported by another engine. At 20 
least one RoT somewhere in a mobile trusted platform MUST be a dedicated instantiation with a preassigned 21 
EK or AIK because there will be nothing on the platform to measure it. These RoTs MUST be instantiated and 22 
supplied in a way that guarantees that their EK or AIK remains secret. 23 

Start of informative comment: 24 

Trusted Resources are customized to provide Trusted Services, which can be regarded as inherently 25 
trustworthy because of the credential (EK or AIK) assigned to the Trusted Resources. Such a credential can be 26 
arranged to be usable by the Trusted Services, but only so long as they meet their correct Service Definition.  27 

By contrast Normal Resources have no embedded credential, and so are not inherently trustworthy. Normal 28 
services (interface #5) are instantiated by customising Normal Resources with a Service Definition, and are 29 
also not inherently trustworthy. However, as discussed in Section 4.1.1, Normal Resources and corresponding 30 
Normal Services can become trusted by being measured.  31 

Each engine contains Internal Trusted Services. Internal Trusted Services measure (interface #4) Normal 32 
Services and provide other services (such as Protected Storage, Monotonic Counters, Delegation, etc.) to the 33 
Normal Services. The Internal Trusted Services report (interface #2) measurements (signed by AIKs) to 34 
external entities, and use those measurements internally (for sealed data). Internal Trusted Services have 35 
internal access (interface #3) to a set of Trusted Resources. Isolation of the Internal Trusted Services from 36 
the Normal Services ensures that the Internal Trusted Services remain inherently trustworthy. 37 

Internal Trusted Services may be exported from one engine to another; the exported services then act as the 38 
Internal Trusted Services of the importing engine. Exported Trusted Services need not be a duplicate of 39 
Internal Trusted Services.  40 

Similarly, Normal Services may be exported to be used as Normal Resources of another engine, if 41 
accompanied by evidence (signed measurements etc.) of their trustworthiness. 42 

End of informative comment 43 

The Internal Trusted Services MUST be instantiated either by resources belonging to the engine or by Trusted 44 
Services from (interface #1) another engine. The Internal Trusted Services MAY export (interface #2) Trusted 45 
Services that will be the Internal Trusted Services for another engine.  46 
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The Normal Resources MUST be instantiated either by resources belonging to the engine or by Normal Services 1 
exported (interface #6) by another engine and supplied with measurements and /or certificates of their 2 
trustworthiness. 3 

Internal Trusted Services MUST be isolated from Normal Services.  4 

Start of informative comment: 5 

Distinct services within Normal Services might need to be isolated from each other. 6 

The stakeholder of an engine dictates what services are provided by the engine, and how the engine boots. 7 
The stakeholder does this by customising the RTE, which determines how the engine boots if the engine is 8 
supplied in an unfinished state, and / or by customising the RTV, which determines whether a completed 9 
engine is permitted to operate. 10 

Each engine can vouch for its measured services. It measures arbitrary services in normal TCG fashion (using 11 
an RTM and /or Measurement Agent), signs those PCR values using an AIK, and attaches the signed PCR value 12 
to its service. The AIK is used (either directly or indirectly via a session key) to sign all arbitrary data 13 
exported by a service. Any trusted service (or the RTV) in a receiving engine verifies the signed PCR values 14 
that describe the service, and verifies the signature on all data imported by the service.  15 

 16 

Service verification may be simplified if a service executes in an engine on a highly integrated platform. If 17 
the Device Manufacturer’s engine instantiated a complete service in an allocated engine, the DM’s engine can 18 
sign credentials describing the PCR values that the service should produce, and send those credentials to the 19 
receiving engine. Further simplification may be possible if the receiving engine was also instantiated by the 20 
DM’s engine. If the DM’s engine “knows” that the measured engine is operating properly, the DM’s engine 21 
could instantiate a protected communication path between the measured engine and the receiving engine, 22 
and the receiving engine can implicitly trust that information received via that path was sent by a properly 23 
executing service. 24 
 25 

There are clearly many design options, including. 26 

� Trusted resources may be provisioned with EKs  and / or with AIKs  27 

� AIKs belonging to an exported Trusted Resource might be AIKs belonging to an imported 28 
Trusted Resource. 29 

� Exported Trusted Services could be a complete separate software instantiation of Internal 30 
Trusted Services, or equally well be a software wrapper (shim) that calls Internal Trusted 31 
Services. 32 

� The PCRs in exported Trusted Services could be distinct registers or derived from PCRs in an 33 
engine’s imported Trusted Services. 34 

� Internal Trusted Services and exported Trusted Services might have different interfaces. 35 
Internal Trusted Services in an engine could be low-level (device-level) commands and 36 
exported Trusted Services in that engine could be TSS-level commands, for example. In one 37 
implementation of a highly integrated platform, the Internal Trusted Services in the Device 38 
Manufacturer’s engine could have a low-level interface and the exported Trusted Services 39 
have a high-level interface. This permits the DM’s engine to get its Trusted Resources from a 40 
dedicated resource (chip) but provide exported Trusted Resources for application level 41 
software. 42 

End of informative comment. 43 

4.1.3 The Roots of Trust 44 

Start of informative comment: 45 
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Resources cannot be trusted unless they are supplied with an EK / AIK and associated credentials, or are 1 
measured by a trusted resource. But some of the RoTs are necessary to make and store measurements. 2 
Therefore there arises the question of when a RoT may be measured, and (indeed) “what qualifies as a 3 
RoT?”.  4 

The fundamental axioms governing the RoTs in a trusted mobile platform may be summarised as follows: 5 

If any entity is mutable other than by the proper authorised entity, it cannot be a RoT. This does not mean 6 
that RoTs must be immutable. A RoT can be mutable, provided that the rest of the engine never needs to 7 
check the construction of that RoT. Note that this does not preclude trusted resources in an engine checking 8 
components before using them to build an allocated RoT.  9 

RoTs composed of allocated resources can't be used to test those allocated resources. 10 

RoTs composed of dedicated resources must perform a self-test and must shut-down if the test fails. 11 
Accordingly, if the RTE builds any other RoT, the RTE must pass a self-test before starting normal operation. 12 
If any RoT is not built by the RTE, it must pass a self-test before starting normal operation. 13 

 14 

The next paragraph imposes ecosystem requirements on the supplier of an RoT component, who should 15 
provide an expected measurement value to go with each component. There are also requirements on how the 16 
mobile platform can use those measurement values. 17 

End of informative comment 18 

For uniformity of reporting, measurements of the RTE, RTM, RTV, RTS and RTR MUST always be stored in the 19 
RTS. In cases where explicit measurement would be circular and have no security value (such as a 20 
measurement of the RTM, or of an RTE used to build the RTM or RTS), then the measurement values MAY be 21 
supplied with a RoT by the RoT's supplier and passed to the RTM on request. For example, such a pre-supplied 22 
RoT “measurement” MAY just consist of a component label (like a MTM Manufacturer Name and Part Name), 23 
and a component version number. Alternatively, such measurements MAY consist of actual values obtained 24 
while an allocated RoT was built. When possible, these actual measurements SHOULD be compared against a 25 
signed value provided by each RoT's supplier.  26 

Start of informative comment: 27 

At least the RTM, RTV and RTS in an engine must exist before that engine can make measurements. 28 

End of informative comment 29 

If any of the RTM, RTV and RTS in an engine are to be built from allocated resources, they MUST be built by 30 
trusted resources.  31 

Start of informative comment: 32 

It follows that a special trusted dedicated entity is required to build any of the RTM, RTV and RTS using 33 
allocated resources. That entity is the RTE. IF the RTE fails to build the allocated Roots-of-Trust in its engine 34 
THEN that engine is in a state that is outside the scope of this specification; an attack or failure has occurred 35 
that is beyond the capabilities of the mechanisms implicit in this specification. 36 

An RTE is not required if the Roots of Trust of the Engine are provided as dedicated resources, or the Engine 37 
starts execution fully built (e.g. built by the Device Manufacturer’s engine). 38 

End of informative comment 39 

RoTs composed of dedicated resources MUST perform a self-test before starting normal operation, and MUST 40 
shut-down if the test fails.  41 

If an Engine builds any Roots of Trust from allocated resources, the Engine MUST have an RTE. The RTE SHALL 42 
build all Roots-of-Trust of its engine that are based on allocated resources. At least part of an RTE MUST 43 
consist of dedicated resources. An RTE therefore MUST be supplied with an EK and/or AIK plus relevant 44 
credentials. The RTE may be immutable or may be mutable, but its integrity MUST always be intact: the 45 
RTE’s integrity and authenticity MUST be maintained during the lifecycle of the platform.  46 
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The RTE MAY support customization by the engine’s stakeholder in order to dictate the trusted services and 1 
resources that have to be present. In this case, the RTE MUST contain a list of the services and resources that 2 
the stakeholder dictates. 3 

Start of informative comment: 4 

The next paragraph imposes ecosystem requirements on the supplier of the RTE. 5 

End of informative comment 6 

The RTE’s supplier MUST ensure that the RTE’s authenticity and integrity are preserved when the RTE is 7 
supplied and / or changed. The methods of supplying and changing the RTE are outside the scope of this 8 
specification but replacement or modification MUST be performed only by an agent and method approved by 9 
the RTE supplier. This requires a manufacturer to implement an upgrade method that is compatible with the 10 
security properties of the Platform's Protection Profile. If the RTE changes during the lifecycle then the 11 
supplier MUST make sure that no rollback attacks can occur after an RTE has been upgraded. Recustomisation 12 
of the RTE is outside the scope of this specification but the RTE’s supplier MUST provide means that preserve 13 
the control of the RTE by the engine’s stakeholder. 14 

 15 

An engine’s RTS and RTR MUST comply with the requirements of the specification “TPM Main Part 1 Design 16 
Principles” Section 3 and all sub-sections (“Protection”) [1]. This describes Protected Capabilities and 17 
Shielded Locations. 18 

A RTM MUST accurately measure the first software that is executed on the platform and MUST reliably record 19 
the result in the RTS.  20 

A Device Manufacturer’s Engine MUST incorporate a RTM, RTS, RTV, RTR and MAY incorporate an RTE. Other 21 
Engines MUST support at minimum the RTM, RTR and RTS. For each Engine (with the exceptional case of an 22 
engine built entirely from dedicated resources), there MUST be one or more measurement events, and where 23 
the RTV exists, verification events.  24 

4.1.4 Physical Presence in a mobile trusted platform 25 

 26 

Start of informative comment: 27 

"Physical Presence" in trusted platforms has three purposes. The first is to provide a safety net, to regain 28 
control of a trusted platform when an Owner's authorisation value is unavailable. The second is to authorise a 29 
TPM command in a way that cannot be subverted by rogue software. The third is to enable a human User to 30 
temporarily deactivate a TPM. All of these cases reduce to the authorisation of TPM commands by a (human) 31 
Operator via physical access to a trusted platform. 32 

Physical Presence must not be supported in a mandatory engine. There are several reasons: 33 

• The entity that determines the security properties of a mandatory engine is assumed to be an 34 
absent (physically remote) entity. 35 

• A human Operator of a trusted mobile phone is not permitted to control the mandatory 36 
engine or to deactivate the MRTM in a mandatory engine. Such control is incompatible with 37 
regulations and contractual agreements.  38 

• Owner authorised commands may not be implemented in a mandatory engine (the 39 
stakeholder may have taken Ownership before the platform was shipped, for example). 40 

• Owner authorised commands may always be submitted to a mandatory engine by entities who 41 
prove privilege via TCG's delegation mechanisms. 42 

• A mandatory engine’s Owner authorisation value may be robustly backed-up, and will never 43 
be lost. 44 

Physical Presence is required in a discretionary engine because: 45 
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• The entity that determines the security properties of the discretionary engine is not 1 
necessarily physically remote. 2 

• A human Operator of a trusted mobile phone is permitted to control the discretionary engine 3 
and deactivate the MTM in the discretionary engine, for reasons of privacy which are 4 
compatible with regulations and contractual agreements. 5 

• Owner authorised commands must be implemented in a discretionary engine to permit 6 
TPM_TakeOwnership and the acquisition of AIKs. 7 

• The Owner authorisation value could be lost by the engine’s Owner. 8 

End of informative comment 9 

A trusted mobile phone MUST NOT implement means of controlling a mandatory engine via Physical Presence. 10 

A trusted mobile phone MUST implement means of controlling a discretionary engine via Physical Presence. 11 

A manufacturer may implement Physical Presence in any way but all indications of Physical Presence MUST 12 
accurately represent detection of appropriate physical interactions with the platform. It is RECOMMENDED 13 
that the Device Manufacturer's engine detects Physical Presence and provides appropriate indications to other 14 
engines and to the engine’s Owner. 15 
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4.2 Overview of Measurement 1 

4.2.1 Measurement Components 2 

“Measurement” in this specification is defined in the same way as the term “integrity metric measurement” 3 
in the TPM Main specification. “Verification” is defined as comparing the actual result of any such 4 
measurement – termed a Target Integrity Metric, or “TIM” – with an expected value of that measurement – 5 
termed a Reference Integrity Metric, or “RIM”. 6 

Start of informative comment: 7 

There are essentially two components involved in the measurement process. 8 

1. One or more measurement agents, each of which is securely connected to all components of the platform 9 
that need to be measured by that agent.  10 

The components to be measured include basic hardware components, which the measurement agent can 11 
interrogate to receive status reports. In that case “measurement” simply consists in recording the hardware 12 
name and version number, and the results of self-tests performed by the hardware.   13 

The components to be measured also include storage media like memory cards (or in some mobile devices 14 
hard disks), non-volatile memory (ROM, EEPROM), and volatile memory (RAM). The measurement agent must 15 
have sufficient read access to these storage media and memory units to determine the contents at any 16 
specified area of the storage media/memory that it needs to measure. 17 

The measurement agent runs executable code which implicitly or explicitly gives a list of things to measure – 18 
these are the Target Objects of measurement. The measurement agent’s stored list of measurements is 19 
called its “measurement configuration data”. Both the executable code and list of Target Objects should be 20 
protected from tampering (i.e. held in tamper-evident storage), or at minimum the measurement agent 21 
should be able to detect tampering and flag an error i.e. some form of checksum or signature verification key 22 
of the expected code and Target Objects is held in tamper-evident storage. (Alternatively, the configuration 23 
data may have been measured and verified at an earlier stage of boot. This is a feature of the transitive boot 24 
process discussed in Section 5.4.) 25 

 26 

2. A place to store the measurements. This functionality is provided by the set of Platform Configuration 27 
Registers (PCRs) of a Mobile Trusted Module. The RTM + other measurement agents use the RTS to store 28 
measurements, so the measurement agent will therefore need to have write access to the MTM’s PCRs. As 29 
each PCR is expected to only receive a small amount of input data, the value of each object measured is 30 
hashed before extending into a PCR. 31 

 32 

In the discussion which follows, a general measurement agent is distinguished from the very first 33 
measurement agent running within any Engine on the platform. This first measurement agent is the Root of 34 
Trust for Measurement of that Engine.  35 

How tightly connected the measurement agent is to the objects of measurement will depend somewhat on 36 
when that agent is intended to execute. A measurement agent which executes soon after power-up (e.g. 37 
RTM) will be expected to have physical interfaces to the measured components, as the full set of software 38 
interfaces (device drivers, OS) has not been loaded yet. Later running measurement agents can assume that 39 
software connections to the objects of measurement already exist and are already known to be trustworthy, 40 
and thus the measurement agent is a custom piece of software on the OS running under an account with 41 
appropriate read privileges.  42 

Similar considerations apply to the connection to a MTM. An early-running measurement agent might be able 43 
to send a direct MTM command over a physical bus; otherwise it might need to interact with a MTM through 44 
some part of the TSS. For example, the measurement agent may be able to use the TCG Device Driver 45 
Library, or the TCG Core Services Interface (Tcsip_Extend, Tcsi_LogPcrEvent). Or if it is even higher level, the 46 
TCG Service Provider Interface (Tspi_TPM_PcrExtend).  47 
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As the platform is able to support several Engines, there may be dependencies between measurement agents 1 
in different Engines. For instance, Engines may be chained : one Engine executes, then terminates, but starts 2 
up another Engine etc. In that case, the RTM of a later Engine in the chain may be first measured by a 3 
separate measurement agent running in an earlier Engine of the chain.   4 

Alternatively, Engines may be nested, so that all later Engines run as applications within the Device 5 
Manufacturer’s Engine (which also continues running other functionality). In that case, whole nested Engines 6 
could be measured at boot-time by a measurement agent running in the Device Manufacturer’s Engine, and 7 
the RTM of the nested Engine may not have to measure anything itself at boot-time (just make measurements 8 
during run-time).  9 

End of informative comment. 10 

4.2.2 Interfaces to the Roots of Trust in a Secure Boot Engine 11 

For any given Engine, the RTS and RTR are Roots of Trust as defined in the TCG specifications “TPM Main Part 12 
1 Design Principles” [1], “TPM Main Part 2 TPM Structures” [2], and “TPM Main Part 3 Commands” [3]. The 13 
Mobile Trusted Module contains the RTS and the RTR, and MUST be as defined in “TCG Mobile Trusted Module 14 
Specification” [5].  15 

The RTM is a platform-specific Root of Trust that is defined in this specification (Section 4.1 and section 4.2.1 16 
above). The RTV and RTE are new RoTs that are defined in this specification (Sections 4.1, 4.2.1 above and 17 
Section 5.1 below).  18 

Start of informative comment: 19 

Figure 4Error! Reference source not found. illustrates the interfaces to the Roots of Trust during 20 
measurement and verification. 21 
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Figure 4. Interfaces 1 

In Figure 4, the bottom is the Mobile Trusted Module. This block is much like a PC style Version 1.2 TPM. 2 
However, it provides some additional commands as listed in “TCG Mobile Trusted Module Specification” [5], 3 
and some PC Version 1.2 TPM commands may be absent. 4 

On top there is a point of entry called the Trusted Mobile Software Stack (TMSS). This stack is not explicitly 5 
defined in this specification, but is at about the same level as the TSS Core Services for PC platform. On top 6 
of this the ‘users’ of the trusted services are shown. These are the OS, Measurement Agents, and Verification 7 
Agents. Note, that all of those agents might actually be part of the OS, and there will be interactions 8 
between the OS and these agents, which are not depicted above. It is also important to note that in the early 9 
stages of the boot process, entities like an RTV and RTM may directly interact with the MTM without going 10 
through a TMSS. 11 

End of informative comment. 12 
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4.3 One possible platform instantiation 1 

Start of informative comment: 2 

A commercial trusted mobile platform should be cost-effective. In this example, most functions that could be 3 
implemented in software are implemented in software; hence it could be the basis for a commercial trusted 4 
mobile platform. This design behaves the same as a more expensive platform built with extensive hardware 5 
support, albeit with lower strength-of-function, because hardware isolation is stronger than software 6 
isolation. There are of course many other platform instantiations than in this example, and this example is 7 
simply designed to illustrate the usage of an MTM. 8 

 9 

 10 

Figure 5. Example Platform 11 

Figure 5Error! Reference source not found. illustrates a platform composed of a DM’s engine and trusted 12 
engines A, B and C. The platform boots from a dedicated RTE that creates an allocated RTM, RTS, RTR and 13 
RTV for an allocated Device Manufacturer’s engine (an Operating System). The OS provides conventional OS 14 
services and also provides software compartments that instantiate trusted engines A, B and C. These are 15 
isolated sets of applications and trusted services. All the trusted services consumed by engines A, B and C are 16 
provided as a service by the DM’s engine (the OS). 17 

In Figure 5Error! Reference source not found., the trusted engines A, B, and C execute applications on 18 
behalf of a Communications Carrier, Service Provider, and User. The Device Manufacturer’s engine provides 19 
radio access only to the Communications Carrier. The Communications Carrier engine provides network access 20 
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for the Service Provider engine, and the Service Provider engine provides an address book service for the 1 
User. The User engine stores the User’s data. These services are communicated via the OS, which ensures 2 
that services come from the correct source and go to the correct destination. Each application is provided by 3 
the relevant stakeholder and stored in unprotected NV storage in the platform during manufacture. 4 

In this example, only the Device Manufacturer’s engine has access to basic platform resources, which 5 
comprise a computing engine with a user interface, debug connector, a radio transmitter and receiver, 6 
Random Number Generator, and SIM interface. The computing engine has a protected execution environment 7 
as well as a less privileged execution environment. The protected execution environment is used for critical 8 
security functions, in this case the Roots-of-Trust and an OS kernel. The Roots-of-Trust are (of course) 9 
implemented as Protected Capabilities and Shielded Locations, defined in the “Protection” section of “TPM 10 
Main Part 1 Design Principles” [1]. In this design, the Roots-of-Trust and OS kernel can co-exist without 11 
explicit separation mechanisms because the OS kernel is designed never to read memory used by the Roots-12 
of-Trust. The less privileged environment accesses the protected environment exclusively through a defined 13 
API, and cannot subvert the protected environment. Both environments have access to volatile storage. The 14 
protected environment has access to write-once non-volatile storage in the form of ROM but has no access to 15 
protected write-many non-volatile storage. The protected environment therefore always boots into the same 16 
fixed state when power is completely removed and then reapplied. 17 

The protected environment boots from a dedicated RTE. On boot, the RTE builds an allocated RTM, RTS, RTR 18 
and RTV in the protected environment, and then starts the kernel of an Operating System in the protected 19 
environment. The kernel builds an OS in the less privileged DM environment. 20 

The OS provides normal OS services and also provides isolated execution environments that instantiate and 21 
isolate other trusted engines. The trusted engines are built according to specifications provided by the Device 22 
Manufacturer, designed to satisfy the requirements of the other platform stakeholders. The trusted services 23 
in those other engines are provided as a service by the OS. Applications (ie. measured services) executing in 24 
different trusted engines are therefore isolated from each other by the OS, are measured and reported via 25 
the OS, and receive TCG trusted services (such as Protected Storage functions and time stamping functions) 26 
from the OS. The OS also provides AIKs for each of the other trusted engines.  27 

The Trusted Services API is currently undefined and is therefore currently manufacturer specific. A Trusted 28 
Services API may be defined in future TCG specifications. 29 

End of informative comment. 30 

 31 
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5. Measurement and Verification 1 

 2 

As discussed in Section 4.1.2, engines in a mobile platform are generally not REQUIRED to support an RTV. All 3 
normative statements in this section referring to the RTV, Verification Agents, RIMs, RIM_Certs, RIM_Auths 4 
and Validity Lists are applicable to an engine conditional on that engine supporting an RTV.  5 

The DM’s Engine MUST support an RTV, and any other engines with remote owners (i.e. owners who are not 6 
local Users of the platform) SHOULD support an RTV. An engine with a local owner (i.e. a User engine) MAY 7 
support an RTV, but in that case the local owner SHALL have full control over what measurements within the 8 
engine are verified, and what are considered “correct” values of those measurements.   9 

All engines MUST support an RTM, RTS, RTR and a transitive chain of measurement 2 , to provide an 10 
authenticated boot. Hence statements in this section referring to the RTM and Measurement Agents are 11 
applicable to all engines. 12 

 13 

                                       
2 The minimum engine requirement for a transitive chain is that the first non-RoT to execute on the platform is 
measured before it runs. Ensuring a more meaningful transitive chain requires verification of the links in the 
chain, and imposes ecosystem requirements on all parties providing the links, as discussed in Section 5.5. 



TCG Mobile Reference Architecture   TCG Copyright 
Specification version 1.0    

Revision 5 26 June 2008  Page 39 of 89 
 TCG PUBLISHED 

5.1 Root-of-Trust-for-Verification and Verification Agents 1 

 2 

5.1.1 Measurement Verification 3 

 4 

Start of informative comment: 5 

In the Mobile Phone platform, additional functionality to normal TCG measurement is provided by verifying 6 
the results of measurement. This verification can be done as the measurements are performed, in a model 7 
which can be described as “Measure � Verify � Extend”.  8 

Each verification agent works in close conjunction with a measurement agent, and is called immediately after 9 
each measurement to be verified. In fact the two agents may well be implemented together. The very first 10 
verification agent for an Engine should be conjoined with the RTM for an Engine and is called a Root of Trust 11 
for Verification (RTV).  12 

To perform verifications, the measurement agent – for example - retrieves from a stored list each item to 13 
measure (called a target object) and makes the actual measurement (TIM). Then the verification agent 14 
retrieves the corresponding expected result of the measurement, the Reference Integrity Metric (or RIM).  15 

Each RIM may also be provided with the expected value of one or more PCRs before the PCR extend has 16 
occurred.  This acts as a check that previous intended measurements have been performed (i.e. none were 17 
skipped), that they were performed in the right order, and that the collective results were as expected.  18 

Note that the RTM and RTV are heavily dependent on secure storage within the Engine (provided by the Root 19 
of Trust for Storage). This gives rise to a couple of plausible implementation models.  20 

� The RTS and RTR are implemented together as one unit within an Engine, while the RTM and RTV are 21 
implemented together as another unit within the engine.  22 

In this case, an interface is needed between the RTM/RTV and RTS/RTR to create and retrieve RIMs 23 
and to extend measurements. The combined RTS and RTR are what is called the “MTM” and the 24 
interface is defined in “TCG Mobile Trusted Module Specification” [5]. 25 

� RTS, RTR, RTM, and RTV are all implemented together as a common unit within the engine.  26 

In this case, it is not necessary to expose an interface to a “MTM” when implementing the RTM and 27 
RTV, just ensure that this interaction between the roots of trust functions correctly. 28 

End of informative comment. 29 

 30 

5.1.2 Operation 31 

The Root-of-Trust-for-Verification (RTV) verifies measurements of the components of its engine against 32 
Reference Integrity Metrics (RIMs). Hence, the RTV MUST have access to an integrity protected list of RIMs, 33 
contained in RIM Certificates. For details about RIMs and RIM Certificates, see “TCG Mobile Trusted Module 34 
Specification” [5].  35 

 36 

 37 

 38 

 39 

 40 

 41 
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Start of informative comment: 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

Figure 6 illustrates this process. The RTV (not the RTM) does the extend operation into a MTM. The RTM 19 
measures events and then passes the measurement to the RTV. The RTV compares the measured value 20 
against a Reference Integrity Metric (RIM) contained in a RIM Certificate. If the values match, the RTV 21 
attempts a verified extend (using MTM_VerifyRIMCertAndExtend, [see “TCG Mobile Trusted Module 22 
Specification”] of the measured value into the RTS (and the measured software is permitted to execute). 23 
Otherwise, if the measured value is different to the reference value, or if the verified extend fails, then the 24 
measured software is not executed, and in some cases an alternative execution path may be followed.  25 

End of informative comment. 26 

At later stages of boot, the Root-of-Trust-for-Verification SHOULD pass the responsibility for verifying 27 
measurements to other Verification Agents (see Section 5.5). The RTV MUST either pass the responsibility for 28 
verifying measurements to other verification agents, or be the sole verification agent throughout the boot 29 
process. The interaction between such a Verification Agent and the associated Measurement Agent is exactly 30 
as shown for the RTV and RTM above. Requirements in 5.1.3 concerning configuration, upgrades and 31 
customization of the RTV also apply to other verification agents: however these requirements for other 32 
verification agents SHALL be met using a transitive chain of trust from the RTV (see Section 5.4).  33 

An instantiation of the Root-of-Trust-for-Verification has the following properties: 34 

1. The RTV SHALL be resistant to all forms of software attack and to the forms of physical attack 35 
implied by the platform’s Protection Profile. 36 

2. The RTV SHALL supply an accurate report of the availability of the corresponding Reference Integrity 37 
Metrics (RIMs). 38 

3. The RTV SHALL supply an accurate report of the relationship (equal or not equal) between the 39 
measurements and corresponding Reference Integrity Metrics (RIMs). 40 

software 

is not executed 
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Figure 6. Relationship of RTV and RTM 
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4. Upon verification failure, the RTV SHALL either trigger the transition of the Engine to a FAILED state, 1 
or where the entity verified was not a mandatory function, trigger an alternative execution path. The 2 
RTV MUST NOT continue the transitive trust boot process in the same manner as if there is no failure. 3 

5.1.3 Configuration 4 

Start of informative comment: 5 

The whole of this section, including all sub-sections, consists of ecosystem requirements, applicable to the 6 
RTV supplier and the engine’s stakeholder  7 

End of informative comment. 8 

The Root-of-Trust-for-Verification (RTV) of an engine SHALL be provisioned by the stakeholder of that engine. 9 
The supplier of the Root-of-Trust-for-Verification SHALL be responsible for the security of the provisioning 10 
process, i.e., the supplier MUST make sure that authenticity and integrity of the Root-of-Trust-for-11 
Verification are preserved. 12 

5.1.3.1 Upgrades  13 

The supplier also SHALL be responsible for secure upgrades of the Root-of-Trust-for-Verification, i.e., for the 14 
authenticity and integrity of the provisioning of a new version of it and its credentials. The supplier SHOULD 15 
establish a mechanism in order in allow for authentic and integral upgrades of the Root-of-Trust-for-16 
Verification. 17 

Start of informative comment: 18 

There are different mechanisms to achieve a secure upgrading process: the supplier may dictate that 19 
upgrades can only be done in a secure environment (i.e., he may provide organisational and logistical means 20 
to achieve security) or he may implement a cryptographic authentication mechanism into the Root-of-Trust-21 
for-Verification so that it can identify authorized upgrading requests.  22 

End of informative comment. 23 

 24 

The supplier MUST make sure that no rollback attacks can occur after the Root-of-Trust-for-Verification has 25 
been upgraded. 26 

5.1.3.2 Customization 27 

The Root-of-Trust-for-Verification SHALL be customized by the engine’s stakeholder in order to dictate which 28 
services have to be measured and against which RIMs the measurements have to be verified. 29 

If the stakeholder wants to re-customize the Root-of-Trust-for-Verification at a later point in time he MAY 30 
replace the whole customisation by a new version of it or only components of the customisation (for instance, 31 
he MAY only want to change the lists of services which have to be measured or the list of RIMs and RIM 32 
Certificates).  33 

In any case, the stakeholder SHALL be responsible for preserving authenticity and integrity of this process.  34 

The stakeholder MUST make sure that no rollback attacks can occur after the list of measured services or the 35 
list of RIMs and RIM Certificates have been changed. 36 

 37 
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5.2 Secure Provisioning of RIMs 1 

Start of informative comment: 2 

The access of the Root-of-Trust-for-Verification to the integrity protected list of RIMs is very security 3 
sensitive. The stakeholder of the engine has to make sure that Root-of-Trust-for-Verification has access to 4 
Reference Integrity Metric values in a way so that authenticity and integrity of them are preserved. (In fact, 5 
the same requirements apply for accessing the RIMs of any Verification Agent.) 6 

This requirement has two aspects: 7 

� The stakeholder has to securely deliver the Reference Integrity Metrics. That is, the stakeholder has 8 
to make sure that the integrity during the provisioning process is preserved and that the RIMs cannot 9 
be modified in an unauthorized way.  10 

� The stakeholder has to provide a mechanism that ensures the security of the access of the Root-of-11 
Trust-for-Verification to the RIM values with respect to their authenticity and integrity.  12 

These two aspects are met, respectively, by external RIM Certificates, and internal RIM Certificates. 13 

The stakeholder has to customize the Root-of-Trust-for-Verification at least with an authorized list of RIM 14 
values and their description. The stakeholder should also provide a mechanism to update RIM values so that 15 
their authenticity and integrity is preserved. When doing so, the stakeholder has to make sure that no 16 
rollback attacks can occur. 17 

This section imposes ecosystem requirements on all parties that provide RIMs, as well as on the Engine itself.  18 

End of informative comment. 19 

The Security Properties supported by a RIM provisioning method can be summarized as follows: 20 

1. Source: authentication, authorization, integrity 21 

The Engine MUST be able to correctly establish the source of the RIMs being provisioned to the 22 
Engine. Further, having established the source, the Engine MUST be able to decide whether that 23 
source is authorized to supply RIMs. In addition, it MUST be able to determine that the RIMs have not 24 
been corrupted since leaving that source. If this determination is not possible, the Engine becomes 25 
susceptible to Impersonation or Man In The Middle Attacks.  26 

A related issue concerns protection of RIMs once they are installed on the Device. The Engine MUST 27 
be able to determine if its installed RIMs have been completely removed by an attacker and replaced 28 
by an unauthorized set. If this determination is not possible, the Engine becomes susceptible to 29 
Reflash attacks. 30 

2. Newness 31 

The Engine MUST be able to determine that RIMs being provisioned by the source are newer than RIMs 32 
already installed on the Device. If this determination is not possible, the Engine becomes susceptible 33 
to Replay attacks.  34 

Again, a related issue concerns protection of RIMs once they are installed on the Device. The Engine 35 
MUST be able to determine if its installed RIMs have been replaced by a set that was once valid, but 36 
older than the replaced set. If this determination is not possible, the Engine becomes susceptible to a 37 
special type of reflash attack: Version Rollback.  38 

3. Currency 39 

The Engine MUST be able to determine that RIMs being provided by the Source are still considered to 40 
be valid by the Source. If this determination is not possible, the Engine becomes susceptible to 41 
installing RIMs that have been Revoked by the source. This determination MAY be implicit: if the 42 
Engine can detect that a particular source will never revoke any of its RIMs, it does not need to 43 
retrieve explicit information on whether a given RIM is still valid.   44 
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In the following paragraphs (Sections 5.2.1 to 5.2.5), a standardized method is defined for provisioning RIMs 1 
to meet these security properties. The RIMs are originally supplied by authorized external parties (called 2 
“RIM_Auths”) and are provided for use by the RTV or any other Verification Agents of an Engine. It is not 3 
REQUIRED that this defined method be used, or that is the only way to provide RIMs to a Device. But this 4 
method SHOULD be supported for interoperability. Further, any alternative methods MUST have security 5 
properties at least as strong as the method defined below, and MUST NOT prevent the defined method 6 
operating alongside them.  7 

5.2.1 RIM_Auths 8 

Each Engine has a pre-configured public key called the Root Verification Authority Identifier (RVAI). This key 9 
MUST be integrity protected using shielded storage (e.g. ROM or NV storage in the MTM, or the RVAI is signed 10 
with a key stored in the MTM). The RVAI is a verification root key as defined in “TCG Mobile Trusted Module 11 
Specification” [5]. Each verification agent also has access to monotonic counters (see Section 6.3.2).  12 

Start of informative comment: 13 

The remainder of section 5.2.1 consists of ecosystem requirements, applicable to the Root Verification 14 
Authority and delegate RIM_Auths.  15 

End of informative comment. 16 

The party that owns the RVAI private key (the Root Verification Authority) is the stakeholder for the Engine. 17 
The Root Verification Authority acts as the “Root CA” of a certificate hierarchy. It can issue certificates to 18 
“primary” CAs, which can in turn issue certificates to sub CAs, and so on in a chain until end entity 19 
certificates are reached. The end entity keys are then used to sign RIM_Certs, using the TPM_RIM_Certificate 20 
structure defined in “TCG Mobile Trusted Module Specification” [5], while providing a public key signature as 21 
the proprietary authData 3.  22 

For simplicity, the Root Verification Authority MAY directly sign the RIM_Certs that must be checked by the 23 
RTV (or other verification agents) of the Engine. However, for a general verification agent, the Root 24 
Verification Authority SHALL be able to delegate to other authorities. All delegates in the hierarchy are called 25 
RIM_Auths, and the proofs of delegation are called RIM_Auth_Certs. Delegates that are authorized directly by 26 
the Root Verification Authority are called Primary RIM_Auths; the Primary RIM_Auths MAY in turn delegate 27 
further RIM_Auths. End entity RIM_Auth_Certs correspond to end entity RIM_Auths, as these entities are not 28 
able to delegate further, just sign RIM_Certs.  29 
 30 
The structure TPM_Verification_Key defined in “TCG Mobile Trusted Module Specification” SHOULD be used 31 
for RIM_Auth_Certs, and this structure MUST be used where the RIM_Auth_Certs need to be verified using a 32 
MTM. A public key signature SHALL be provided as the proprietary authData.  Where a RIM_Auth is able to act 33 
as a CA, it MAY also issue X.509 certificates to other RIM_Auths. 34 

Each RIM_Auth_Cert MUST contain at least the following information; this information is automatically 35 
contained if the structure TPM_Verification_Key is used: 36 

� An Identifier for the Issuer Keys and Subject Keys of this Certificate  37 

� Flags indicating whether this RIM_Auth can sign RIM_Certs directly and/or can sign delegation 38 
structures for other RIM_Auths and/or can revoke what it has signed. 39 

� The RIM_Auth’s public key 40 

� The Signature of the private key that issued this RIM_Auth_Cert 41 

The RIM_Auth_Cert MAY also be securely bound to any of the following lists restricting key usage (e.g. via the 42 
TPM_Verification_Key extension digest field). Such lists MAY contain wild-cards, from/to ranges etc.  43 

 44 

                                       
3 The algorithm, key-size and hash function must be chosen to be consistent with current TPM Main specs. For 
example at the start of 2006, they would be RSA-PSS with 2048 keys and SHA-1 hashing. 
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� A list of platforms and Engines for which this RIM_Auth is allowed to provide RIMs.  1 

� A list of PCRs that this RIM_Auth is allowed to instruct verification agents to extend.   2 

� A list of target objects (labels) for which this RIM_Auth is allowed to provide RIMs. 3 

The RIM_Auth_Cert MAY also be bound to advisory information (e.g. via the TPM_Verification_Key extension 4 
digest field). Such information could include: 5 

� A list of target objects (labels) for which this RIM_Auth is expected to provide RIMs.  6 

� A URL for the RIM_Auth, indicating where the most recent information signed by that RIM_Auth (e.g. a 7 
full set of RIM_Certs and validity lists) MAY be obtained.  8 

The exact format of the restriction lists, and any other advisory information, is proprietary to the RIM_Auth 9 
and corresponding verification agent(s). 10 

5.2.2 RIM_Auth Validity Lists 11 

 12 

Start of informative comment: 13 

The next paragraph contains ecosystem requirements, applicable to the Root Verification Authority and 14 
delegate RIM_Auths.  15 

End of informative comment. 16 

If the Root Verification Authority (or other RIM_Auth acting as a CA) wishes to retract delegated 17 
authorization, then it SHOULD do so by signing a periodic RIM_Auth_Validity_List indicating the key 18 
identifiers of which of its delegates are still valid. Every RIM_Auth which signs Validity Lists MUST ensure that 19 
it always has signed a Validity List whose “valid from” and “valid to” fields in UTCtime format enclose the 20 
current date and time. Whether a RIM_Auth signs RIM_Auth Validity Lists or not MUST be indicated by a key-21 
usage flag in the TPM_Verification_Key structure (see “TCG Mobile Trusted Module Specification”[5]). 22 

Start of informative comment: 23 

This key usage mask is defined in the "TCG Mobile Trusted Module Specification” – it defines key usages which 24 
need to be recognized by verification agents, but not by the MTM.  25 

#define TPM_VERIFICATION_KEY_USAGE_AGENT_MASK 0x0f00 26 

End of informative comment. 27 

#define TPM_VERIFICATION_KEY_USAGE_SIGN_RIM_AUTH_VALIDITY_LIST 0x0100 28 

 29 

typedef UINT32 TPM_RIM_AUTH_VALIDITY_LIST_HANDLE; 30 

typedef struct TPM_RIM_AUTH_VALIDITY_LIST_STRUCT { 31 

 TPM_STRUCTURE_TAG tag; 32 

 TPM_VERIFICATION_KEY_ID  signer_id; 33 

 UTCTIME  validFrom; 34 

 UTCTIME  validTo; 35 

BYTE validityListSize; 36 
 [size_is(validityListSize)] TPM_VERIFICATION_KEY_ID validityListKeyIds[]; 37 

 UINT32 integrityCheckSize; 38 

 [size_is(authSize)] BYTE integrityCheckData[]; 39 

} TPM_RIM_AUTH_VALIDITY_LIST; 40 

typedef BYTE UTCTIME[13]; 41 
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Parameters 1 

Type Name Description 

TPM_STRUCTURE_TAG Tag This field MUST contain the value 
TPM_TAG_RIM_AUTH_VALIDITY_LIST. 
It is used to identify the structure. 

TPM_VERIFICATION_KEY_ID signer_id This is an arbitrary identifier whose 
function is to help the Engine 
determine which RIM_Auth signed 
this validity list.  

UTCTIME validFrom This is the date and time at which 
the validity list becomes valid.  

UTCTIME validTo This is the date and time at which 
the validity list ceases to be valid.   

BYTE validityListSize This MUST be the number of entries 
in the validity list (note the 
maximum size of 255 entries) 

TPM_VERIFICATION_KEY_ID[] validityListKeyIds This MUST contain a list of all key 
identifiers of RIM_Auth keys that are 
still valid delegates for the RIM_Auth 
which signed this validity list.  

UINT32 integrityCheckSize This MUST be the length of the buffer 
integrityCheckData. 

BYTE[] integrityCheckData This field MUST contain an integrity 
check of the TPM_VERIFICATION_KEY. 
This exact manner in which to verify 
this is defined in the object 
referenced by parented 

 2 

Start of informative comment: 3 

A validity list is preferred to a revocation list for at least the following reasons: 4 

i) It is bounded in size, whereas a revocation list can grow without prior bounds; 5 

ii) It is possible for the Engine to detect, having received the validity list, that it may be missing some valid 6 
RIM_Auth_Certs. 7 

End of informative comment. 8 

5.2.3 Storage and Use of RIM_Auth_Certs and RIM_Auth_Validity Lists  9 

 10 

Each Engine of the Device MUST have available the following root authorization data in an integrity-protected 11 
form (this may be stored or may be provided externally to the Engine e.g. over a network interface): 12 

� All the RIM_Auth_Certs associated with RIM_Certs that the Engine is currently using, and that are 13 
signed directly by the RVAI.  14 

� If the RVAI key provides revocation information, then the most recent revocation information the 15 
Engine has been shown, that is signed by the RVAI private key.  16 
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In addition, each Engine of the Device MUST have available a full tree of authorization data in an integrity-1 
protected form: 2 

• Every RIM_Auth_Cert associated with RIM_Certs that the Engine is currently using, that presents a 3 
certificate chain up to the RVAI. 4 

• For each RIM_Auth CA that provides revocation information, then the most recent revocation 5 
information the Engine has been shown. This MUST be a current Validity List if the RIM_Auth CA signs 6 
Validity Lists.  7 

If stored in the Engine, such authorization data MUST be updateable only by an authorized process.  8 

Start of informative comment: 9 

The storage can be protected from tampering using a signing key in the MTM that is usable only by the 10 
authorized process. Or the data can be protected by using an area of Non-Volatile storage in the MTM which 11 
can only be updated by the authorized process. 12 

For example, the authorized process could be controlled by the RIM Conversion Agent in the Engine, which 13 
processes RIM_Auth_Certs and revocation information before generating internal RIM_Certs. (See Section 14 
6.3.4.) The authorization data is signed using a key stored in the Engine’s MTM. This signing key is bound to a 15 
set of PCRs ensuring the Engine blocks use of the key by all processes except the RIM Conversion Agent. 16 

End of informative comment. 17 

The above information MUST be available to the Engine for at least the following uses: 18 

1. Authorization of new RIM_Certs. 19 

The Engine MUST be able to determine for a given external RIM_Cert whether the certificate was signed 20 
correctly using a RIM_Auth’s public key. The Engine MUST also be able to determine whether the RIM_Auth 21 
was authorized to sign that sort of RIM Certificate (i.e. has a correct delegation chain with nothing revoked 22 
on that chain, and the RIM_Auth_Cert has the correct – optional - PCR and label settings). This is discussed 23 
further in Section 6.3.4 below.  24 

If any lists restricting key usage are present and bound to a RIM_Auth_Cert, then the Engine MUST respect the 25 
relevant restrictions on the RIM_Auth’s authority. If any such lists are not present, then the Engine MUST 26 
assume that the RIM_Auth has no restrictions in the relevant aspect(s). An Engine MAY ignore additional 27 
advisory information that is bound to the RIM_Auth_Cert. However, if the Engine processes the list of target 28 
objects (labels) for which a RIM_Auth is expected to provide RIMs, and notices it is missing a RIM for an object 29 
on this list, it SHOULD attempt to obtain one. 30 

If any of the RIM_Auth CAs for an Engine signs RIM_Auth Validity Lists, then the Engine MUST be able to 31 
process them. If it is known at Engine design that none of the RIM_Auths will ever sign RIM_Auth Validity Lists 32 
(i.e. that no RIM_Auths will ever be revoked), then this processing functionality MAY be omitted from the 33 
Engine. However, for future proofing, it is strongly RECOMMENDED that all engines can process RIM_Auth 34 
Validity Lists. 35 

The Engine MUST ensure whenever using Validity Lists that the information contained therein is still current, 36 
according to the most reliable clock the Engine has available. (If no clock is available then the Engine MUST 37 
just use the most recent Validity List that it has). If the Engine detects that a given RIM_Auth signs revocation 38 
information, and detects that the revocation information it has is no longer current, then the Engine MUST 39 
attempt to retrieve current revocation information using an online protocol (for example, by accessing the 40 
web-site of the relevant RIM_Auth). If the Engine cannot retrieve such information it MUST abort the current 41 
operation which relies on this information.  42 

2. Remote Attestation 43 

The Engine MUST be able to present its current root authorization data, or full tree of authorization data, 44 
when attesting its trust state to service providers. This is discussed further in Section 6.3.4 below. 45 

 46 



TCG Mobile Reference Architecture   TCG Copyright 
Specification version 1.0    

Revision 5 26 June 2008  Page 47 of 89 
 TCG PUBLISHED 

5.2.4 RIM Validity Lists 1 

Start of informative comment: 2 

The next paragraph contains ecosystem requirements, applicable to RIM_Auths that sign RIM_Certs.  3 

End of informative comment. 4 

RIM Certificates signed by RIM_Auth keys are called “external” RIM_Certs (to distinguish them from “internal” 5 
RIM_Certs signed within the Engine itself – see Section 6.3.4). RIM_Auths that are able to sign RIM Certificates 6 
SHOULD be able to revoke such certificates (typically also issuing a replacement). If a RIM_Auth is able to 7 
revoke its RIM_Certs, then it SHOULD do so by signing a periodic RIM_Validity_List indicating the serial 8 
numbers of which of its certs are still valid. Every RIM_Auth which signs Validity Lists MUST ensure that it 9 
always has signed a Validity List whose “valid from” and “valid to” fields in UTCtime format enclose the 10 
current date and time. Whether a RIM_Auth signs RIM Validity Lists or not MUST be indicated by a key-usage 11 
flag in the TPM_Verification_Key structure (see “TCG Mobile Trusted Module Specification” [5]).  12 

#define TPM_VERIFICATION_KEY_USAGE_SIGN_RIM_VALIDITY_LIST 0x0200 13 

typedef UINT32 TPM_RIM_VALIDITY_LIST_HANDLE; 14 

typedef struct TPM_RIM_VALIDITY_LIST_STRUCT { 15 

 TPM_STRUCTURE_TAG tag; 16 

 TPM_VERIFICATION_KEY_ID signer_id; 17 

 UTCTIME  validFrom; 18 

 UTCTIME  validTo; 19 

BYTE validityListSize; 20 
 [size_is(validityListSize)] RTV_RIMCERTSERIAL validityListSerialNumbers[]; 21 

 UINT32 integrityCheckSize; 22 

 [size_is(authSize)] BYTE integrityCheckData[]; 23 

} TPM_RIM_VALIDITY_LIST; 24 

typedef BYTE RTV_RIMCERTSERIAL[12]; 25 

Parameters 26 

Type Name Description 

TPM_STRUCTURE_TAG Tag This field MUST contain the value 
TPM_TAG_RIM_VALIDITY_LIST. It is 
used to identify the structure. 

TPM_VERIFICATION_KEY_ID signer_id This is an arbitrary identifier whose 
function is to help the Engine 
determine which RIM_Auth signed 
this validity list.  

UTCTIME validFrom This is the date and time at which 
the validity list becomes valid.  

UTCTIME validTo This is the date and time at which 
the validity list ceases to be valid.   

BYTE validityListSize This MUST be the number of entries 
in the validity list (note the 
maximum size of 255 entries) 

RTV_RIMCERTSERIAL[] validityListSerialNumbers This MUST contain a list of all serial 
numbers of RIM_Certs that are still 
valid, and that were signed by the 
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RIM_Auth which signed this validity 
list.  

UINT32 integrityCheckSize This MUST be the length of the buffer 
integrityCheckData. 

BYTE[] integrityCheckData This field MUST contain an integrity 
check of the TPM_VERIFICATION_KEY. 
This exact manner in which to verify 
this is defined in the object 
referenced by parentId 

Description 1 

1. The RIM_Cert SerialNumber is a sequence of 12 bytes formed as follows. The first 8 bytes in the sequence 2 
are the label field in the RIM_Cert (of type BYTE[8]). The final four bytes in the sequence are the rimVersion 3 
field in the RIM_Cert (of type UINT32), ordered according to the big-endian convention. 4 

For example: if label = 0xFFEEDDCCBBAA9988 and rim_version = 0x00000002, then the combined twelve 5 
byte serial number = 0xFFEEDDCCBBAA998800000002 6 

Start of informative comment: 7 

2. A validity list is preferred to a revocation list for at least the following reasons: 8 

i) It is bounded in size, whereas a revocation list can grow without prior bounds; 9 

ii) It allows the RIM_Auth to distinguish a RIM_Cert which is revoked with no replacement generated, from 10 
one which is revoked where there is a valid replacement (with a higher version number)  11 

iii) It is possible for the Engine to detect, having received the validity list, that it may be missing some valid 12 
RIM_Certs. 13 

End of informative comment. 14 

5.2.5 Storage and Use of RIM Validity Lists 15 

 16 

Each Engine of the Device MUST have available the following data in an integrity-protected form: 17 

� For each RIM_Auth that provides revocation information for its RIM_Certs, and which has signed 18 
RIM_Certs that the Engine is currently using, the most recent revocation information from that 19 
RIM_Auth that the Engine has been shown. (Note that if the Engine can detect that a given RIM_Auth 20 
never revokes its RIM_Certs, then nothing needs to be stored for that RIM_Auth.) 21 

If stored in the Engine, again such integrity protected storage MUST be updateable only by an authorized 22 
process. The revocation information MUST be available for at least the following uses: 23 

 1. Revocation checking of new RIM_Certs. 24 

The Engine MUST be able to determine whether a given external RIM Certificate has been revoked or not by 25 
the RIM_Auth. (If revoked, it will for instance no longer appear on the RIM Validity List.) 26 

 2. Preventing Replay of an old RIM Validity List 27 

The Engine MUST be able to tell if a supplied RIM Validity List is older than the one it has currently stored. 28 
This prevents replay (and some reflash) attacks, even if the Engine does not have access to an entirely 29 
accurate clock.  30 

If any of the RIM_Auths for an Engine signs RIM Validity Lists, then the Engine MUST be able to process them. 31 
In any case, it is strongly RECOMMENDED that all engines can process RIM Validity Lists. The Engine MUST 32 
ensure when using a RIM Validity List that the information contained therein is still current.  33 
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5.3 Measurement of Platform Behavior 1 

5.3.1 PCR Allocation - Reservation of PCRs in the RTS 2 

Start of informative comment: 3 

It is assumed that the Device platform supports several Mobile Trusted Modules, which provide a TPM 4 
interface and / or a TSS interface. Each measurement agent is associated with a preferred MTM (the MTM of 5 
its own Engine), although it is possible that several measurement agents all extend measurements to the 6 
same MTM. This gives rise to some possible conflicts: what if several measurement agents try to write to the 7 
same PCR of the same MTM, and don’t know of each others actions? In that case, when the PCR is finally 8 
read, the verification check performed by a verification agent may fail.  9 

Resolving such conflicts imposes ecosystem requirements on the Engine supplier, and on the RIM_Auths which 10 
control how measurement agents operate. These ecosystem requirements are listed below, together with the 11 
consequential platform requirements on how many PCRs are needed.   12 

End of informative comment. 13 

Each Engine supplier MUST allocate PCRs within the Engine’s MTM consistently. In Section 5.2.1, the concept 14 
of a “RIM_Auth” was introduced as an entity that provides RIMs to be checked by a given verification agent.  15 

� Each measurement agent that needs to extend to a given MTM SHALL have exclusive access to at least 16 
one dedicated PCR. However, once the measurement agent has finished running, its PCR MAY then be 17 
assigned to another measurement agent which has just started up. Thus there MUST be at least as 18 
many PCRs as concurrent measurement agents within a given Engine. 19 

� Where more than one RIM_Auth is entitled to provide RIMs to be verified in a given Engine, then the 20 
MTM SHALL contain at least one dedicated PCR for each RIM_Auth. Thus there MUST be at least as 21 
many PCRs as RIM_Auths for a given Engine.  22 

Start of informative comment: 23 

In the case of a very simple Engine with only the RTM/RTV (i.e. just one measurement agent and verification 24 
agent) and only one RIM_Auth, there could in theory be only one PCR.  25 

The optional extension to RIM_Auth_Certs discussed in Section 5.2.1 allows the reservation mechanism to be 26 
enforced on the Device. Any RIM_Certs inconsistent with the reservations in the RIM_Auth_Certs (e.g. because 27 
they need to extend the wrong PCR, or use the wrong label) would then be rejected as invalid.  28 

The PCR allocation could need to be larger than the reservations for a single engine would imply, for example 29 
in the case where the MTM of one Engine provides a MTM Service to another Engine. There could be a MTM as 30 
a dedicated resource (such as a physical chip) in the Device Manufacturer’s Engine. Rather than requiring 31 
multiple MTM chips (one per Engine) or forcing other Engines to use software-only MTMs, the Device 32 
Manufacturer could arrange that the keys/PCRs etc. of the other Engines’ MTMs are held protected in the 33 
dedicated resource MTM of its own Engine. In that case, the Device Manufacturer’s MTM would need at least 34 
as many PCRs as there are combinations of (Engine, measurement agent) or (Engine, RIM_Auth). At the logical 35 
level, MTMs cannot be shared between Engines: each Engine will just perceive that it has its own MTM with 36 
just the necessary number of PCRs for that Engine. 37 

Some special PCR reservations apply to the MTM updated by the Device Manufacturer’s RTM. In some sense 38 
this is a distinguished MTM, because it is the only one that has to exist (the DM’s RTM has to write its 39 
measurements somewhere). The PCR allocation of other stakeholder engines is currently undefined.  40 

Observe that different engines may be allocated disjoint PCR index ranges, as this facilitates an 41 
implementation where a single underlying Mobile Trusted Module provides a MTM Service to several engines 42 
(PCR values can then be quoted by the underlying Mobile Trusted Module without any massaging of index 43 
values). These other engines could just use a translation of the DM engine allocation into different indices 44 
(e.g. add 16 for Communications Carrier’s Engine, add 32 for Device Owner’s Engine etc.). 45 

End of informative comment. 46 
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The DM engine’s MTM MUST have at least 16 PCR registers (this is the same number of PCR registers as 1 
defined in [2] for TPM_PERMANENT_DATA). The following PCR allocation is RECOMMENDED for the engine of 2 
the device manufacturer. 3 

PCR 0: 4 

� Relevant (non-identifying) characteristics of the HW platform 5 

PCR 1: 6 

� Relevant (non-identifying) information pertaining to the Roots of Trust is to be measured into PCR 1 7 

PCR 2: 8 

� Engine-Load events for the DM Engine are to be measured into PCR 2 9 

PCR 3-6: 10 

� PCRs 3-6 are to be used for DM proprietary measurements 11 

PCR 7: 12 

� DM Engine Operating System is to be measured into PCR 7 13 

PCR 8-12: 14 

� PCRs 8-12 are reserved for DM proprietary measurements 15 

PCR 13-15:  16 

� Unallocated at present 17 

Note that the number of “extend” events into PCR 1 may depend on platform implementation, e.g., if the 18 
RTS/RTR/RTV/RTM are implemented using allocated or dedicated resources. 19 

It is RECOMMENDED that PCRs 0 to 7 are verifiedPCRs, as defined in [5]. 20 

5.3.2 Concrete measurement into PCRs 0 to 2 21 

Start of informative comment: 22 

The state of an engine can also be described in terms of a sequence of concrete TPM_Extend or 23 
MTM_VerifyRIMCertAndExtend events recorded by the RTM, RTV, verification agents or measurement agents. 24 
This sequence is implementation and policy specific.  This specification does not require a certain state 25 
machine to be followed for TPM_Extends or MTM_VerifyRIMCertAndExtends.  26 

This specification does define a set of syntax for describing certain events during a boot-cycle of an engine.  27 
The purpose is to facilitate interoperability between software components that generate events and software 28 
components that configure policy. Both components need to have exactly the same notion of the syntax used 29 
to describe an event. 30 

The TCG PCR mechanism only allows checking the relationship of events that have been extended into the 31 
same PCR. This specification imposes no required or mandatory ordering for events, but the assignment of 32 
PCRs tries to accommodate any needs for checking relationships of events.  33 

End of informative comment. 34 

This specification defines a set of syntax for describing certain events during a boot-cycle of an engine. The 35 
events SHOULD be described using the following set of parameters: 36 

� Name: Name of the event 37 

� Syntax: The actual byte-level representation of the event in BNF. Strings are in US ASCII.  The 38 
following parameters are used in the definition of events. 39 
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o The non-terminal <image> represents a SHA1 hash of the target binary in lower-case 1 
hexadecimal without any additional spacing and without a leading 0x, e.g. 2 
0badc0de0badc0de0badc0de0badc0de0badc0de. 3 

o The non-terminal <object> is a US-ASCII name of the object/target of the event, e.g. a 4 
filename. 5 

o The non-terminal <engine> is a US-ASCII name of an engine. 6 

o The non-terminal <event> is the US-ASCII non-terminal that represents the actual event. This 7 
can be for example a representation of the label  field in a RIM Certificate (see “TCG Mobile 8 
Trusted Module Specification” [5]) 9 

� Description: Description of when the event is generated.  10 

The actual measurement is a SHA1 hash over the byte-string formatted according to the syntax of the event. 11 

5.3.3 Diagnostic 12 

Name RTE Diagnostic 

Syntax Event ::= Diagnostic:  <engine> : <object> : [<image>] 

Description The RTE Diagnostic event SHOULD be generated to record diagnostic 
information about the trusted resources (RTS, RTR, RTE, RTM, RTV). 

5.3.4 Engine Load 13 

Name Engine Load 

Syntax event ::= Engine-Load: <event> : <object> : [<image>] 

Description The Engine Load event SHOULD  be generated whenever new code or 
configuration that may affect its integrity is loaded into an engine. 

5.3.5 Debug mode Entry 14 

Name Debug Mode 

Syntax event ::= Debug Mode: <engine> : [<image>] 

Description The Debug Mode event SHOULD be generated whenever an engine or its RTV 
enters debug mode.  The <image> non-terminal may in this case be a random-
value.  
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5.4 Transitive chain of trust for Measurement and Verification 1 

agents 2 

 3 

Before completion of execution, the RTM MUST measure (and the RTV MUST verify) the executable load image 4 
of at least one other measurement agent (and at least one associated verification agent). The new 5 
measurement/verification agent(s) are then given control and continue with measurement and verification. 6 

Measurement Agents which execute after the RTM has completed can then measure further measurement 7 
agents, and other functions. This gives rise to a dependency “family tree”, with each measurement agent 8 
acting as a “parent” to the functions that it measures before handing over control. Moving away from the 9 
“root” of the tree there is likely an increase in complexity of code, but a drop in privileges as more parts of 10 
the OS get loaded (e.g. a drop to kernel mode then user mode, then functions in Java virtual machines).  11 

Any function which is required to be executed, and which is required (by a RIM_Auth) to be verified before it 12 
is executed, is referred to as a mandatory function. Typically, measurement and verification agents other 13 
than the RTM/RTV are themselves mandatory functions, but there will usually be others. Any verification 14 
failure for a mandatory function MUST trigger the transition of the Engine to a FAILED state.  15 

There are some restrictions on the structure of the dependency tree, as follows: 16 

� Any measurement agent which is a parent to a mandatory function MUST also be, or be associated 17 
with, a verification agent. 18 

� A measurement or verification agent SHALL NOT be a parent to a mandatory function (such as a MTM 19 
or TSS) when the agent already needs to use that function (to store PCRs etc.) 20 

� Some measurement (and/or) verification agents never hand over control to other measurement or 21 
verification agents. Agents that are not parents MAY be candidates for run-time measurement (and 22 
verification) agents, i.e. entities which continue to measure after boot.  23 

 24 
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5.5 Measurement agent Operation at Higher Layer 1 

Start of informative comment: 2 

This section imposes ecosystem requirements on the RIM_Auths that must create RIMs for higher layer 3 
measurement and verification agents.  4 

End of informative comment. 5 

Each measurement agent SHALL perform measurement functions in the same way as the RTM, as defined in 6 
Sections 4.1.3 and 4.2. In particular:  7 

The measurement agent’s code/configuration data SHALL implicitly or explicitly point at a list of Target 8 
Objects of measurement. Once each measurement is made, the measurement agent MUST either itself 9 
attempt a PCR extend in an MTM with which the measurement agent can communicate or, where verification 10 
is required, MUST pass the measurement to a corresponding verification agent.  11 

Each associated verification agent - if present -  SHALL perform verification functions in the same way as the 12 
RTV. Requirements 1-3 for the RTV, as listed in Section 0, SHALL apply.  13 

Where verification of measurements is required, the associated verification agent MUST be able to retrieve 14 
corresponding Reference Integrity Metrics (RIMs). The verification agent MUST verify each measurement 15 
against a RIM, and if successfully verified, MUST attempt a PCR extend or verified extend in the MTM. If the 16 
verification agent detects a verification failure, or the MTM reports a failed verified extend, then this failure 17 
MUST either trigger the transition of the Engine to a FAILED state, or where the entity verified was not a 18 
mandatory function, trigger an alternative execution path (see Sections 6.3.3.2 and 7).  19 

 20 

All higher layer extend or verified extend actions SHOULD also be recorded in a PCR Event Log (e.g. this will 21 
happen whenever the measurement agent communicates through a Trusted Mobile Software Stack (TMSS).  22 

 23 
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6. Lifecycle Management 1 
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6.1 Initialization 1 

6.1.1 Generation of Storage Root Key  2 

The Storage Root Key (SRK) which is used as the foundation of the Root of Trust for Storage (RTS) component 3 
MUST be generated using a cryptographically strong process that meets or exceeds the requirements for the 4 
strength and equivalent security of the RTS itself (see TCG 1.0 Architecture Overview section 4.3.1.7 [8]).  5 
The SRK MAY be generated on the platform (refer to TCG 1.0 Architecture Overview section 4.3.1.5 [8] for 6 
Random Number Generator guidelines, and to FIPS 140-2 for general guidance on RNG and key generation). 7 
For the DM engine (and if necessary, other remotely owned engines), the SRK MAY be generated externally 8 
and inserted into the engine during manufacture time based on limitations of the engine performance.  If the 9 
AIK is pre-generated and installed during manufacture time the SRK MUST be generated and installed at the 10 
same time. (Because the AIK is stored under the SRK.) 11 

Start of informative comment: 12 

The SRK is a critical part of the on-platform storage function that needs to be robust and long lived.  The SRK 13 
should be an appropriate size to support the algorithm used with in the cryptographically secure storage 14 
function. The RTS block must provide the appropriate controls for storing this key so that once the SRK is 15 
generated and loaded it cannot be modified by subsequent use of the generation request.  The RTS must 16 
provide integrity protection for the storage of the SRK that is capable of detecting when a key has been 17 
altered in any way.  The SRK may be implemented as either a symmetric or an asymmetric key for the RTS 18 
[note: the current TPM 1.2 specification only provides RSA as an option.  The concept of a symmetric SRK is 19 
under consideration].  The storage element for the SRK must provide protection so that the private key or the 20 
secret key, depending on the implementation type, is protected from being made visible to any external 21 
entity.  If this key is allowed to be replaced then all stored data becomes irretrievable and may result in a 22 
non-recoverable state.  This key may also be generated external to the platform by a key generation tool and 23 
installed at the time of device or platform manufacturing.  When this external method is used it should have 24 
the generation method verified to provide strong keys, there should be no linkage between the key that was 25 
loaded and the device or platform identity or other generated keys, and it should be loaded in a reasonably 26 
secure environment.  In this context a secure environment is intended to offer physical protection of the key 27 
generation tools, physical access control to the area the generation and loading is performed within, 28 
appropriate access control to systems that control the process for operators and protection of the network 29 
environment to protect sniffing and subversion from a network based attack.  Industry best practices should 30 
be employed wherever feasible to accomplish this protection.  The level of security established for external 31 
key generation and handling should be at the same level of protection that is required to protect the data. 32 

End of informative comment. 33 

 34 

6.1.1.1 Key Guidelines  35 

The RTS MUST provide integrity protection for the storage of the SRK that is capable of detecting if either the 36 
private or public key has been altered in any way.  The SRK storage MUST provide protection, so that the 37 
private key is protected from disclosure to any external entity i.e. the private part MUST be stored in a 38 
shielded location. This key SHOULD be at least 2048 bits for an RSA key or Elliptic Curve key of size at least 39 
256 bits with an appropriate curve, or another key type permitted by the TPM specification for use as an SRK. 40 

 41 

6.1.2 Creation of Endorsement Key  42 

The Endorsement Key (EK) is an OPTIONAL element for remotely-owned engines in the Mobile environment, 43 
but is REQUIRED for locally-owned engines.  If the EK exists, then it MUST be created and bound to the 44 
engine, and MUST not be migratable.  The EK for the DM’s engine (and if necessary, other engines) SHALL be 45 
generated by the device manufacturer and installed into the RTS.  46 
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There are two approaches to EK key generation and insertion:  1 

1) Manufacturer generates keys off-chip, and inserts as part of the platform creation 2 

2) Manufacturer generates keys on-chip using available commands.  3 

If the off-chip generation and installation method is used by the device manufacture, then the approach 4 
MUST provide a way to block removal of this key pair at a later time or replacing it with a new key pair once 5 
it is fielded.  If the on-chip generation option is used, the generation command MUST be disabled once the 6 
capabilities are ready for shipment.  Once the EK key pair is generated, the device manufacturer MUST build 7 
the EK credential and make it available once the device is ready to be shipped. 8 

Start of informative comment: 9 

The above description follows the definition of the TCG IWG for OEM EK generation when the MTM is 10 
integrated into the processor and the device manufacture at this point is equivalent to the OEM. 11 

End of informative comment. 12 

If the engine includes the use of the EK, there are several optional MTM commands that MUST be supported 13 
(i.e. they become mandatory).  These are defined in “TCG Mobile Trusted Module Specification” [5]. 14 

6.1.3 Creation of Identity Keys 15 

The Identity keys, or AIKs, and their associated certificates MUST be used by the platform to authenticate an 16 
Engine and to attest to the state of an engine.  The AIK and certificates can be generated and installed using 17 
several methods that may or may not depend on the presence of an EK for the platform.   18 

6.1.3.1 AIK generation with an EK 19 

Start of informative comment: 20 

When an engine has an EK available it can generate the AIK key pair and communicate with a privacy CA using 21 
the EK to provide the AIK certificates.  The privacy CA will validate that the engine’s certificates describe a 22 
genuine engine and will generate the AIK certificate.  The AIK certificate will then be sent to the platform for 23 
storage in the RTS.  The Privacy CA is trusted to correctly evaluate Integrity Assertions and the Owner-24 
specific policies as input into the process of issuing AIK-Credentials.  The Privacy-CA in practice can be a local 25 
AIK-Credential issuer (e.g. Enterprise IT Administrator) or it can be a public certificate authority in the sense 26 
of a Classic CA. For the mobile phone platform, the engine stakeholder may be the only entity that generates 27 
the AIK key pairs.  28 

End of informative comment. 29 

Where the engine supports an EK, the process of acquiring an AIK and associated certificates MUST make use 30 
of TPM_MakeIdentity and TPM_ActivateIdentity as defined in the TPM Main specification [3].  31 

6.1.3.2 AIK generation without an EK 32 

Start of informative comment: 33 

If this option is used, there are consequential ecosystem requirements on the manufacturer.  34 

End of informative comment. 35 

The main purpose of the EK is to enroll identities for the MTM.  However, an engine MAY not include the EK, 36 
and if so an identity for the MTM functions SHALL be assigned by the device manufacturer.  If the option of no 37 
EK is used, the manufacturer MUST generate and install the AIK and associated certificates during the 38 
manufacturing process of the engine and bind them to the device. For attestation interoperability, all pre-39 
loaded certificates MUST be in compliance with the TCG Infrastructure credential standard “TCG Credential 40 
Profiles” [6], and it is RECOMMENDED to use the “unified” credential. There is not an option for self 41 
generation of the AIK credentials, so they MUST be generated off-chip and then installed into the engine.      42 

 43 
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6.2 Taking Ownership 1 

Start of informative comment: 2 

The Owner is the actor that controls access by platform users to the cryptographic functionality of a MTM. 3 
Users cannot access the MTM cryptographic functions without permission from the Owner.   4 

The MTM flags “disable” and “ownership” determine a MTM ability to accept an Owner. The flags can be set 5 
TRUE or FALSE via TCG’s Physical Presence interface, and can be used to deny access by software to the MTM 6 
capability that installs an Owner. If disable==FALSE and ownership==TRUE, TPM_TakeOwnership can be 7 
executed. TPM_TakeOwnership installs the Owner’s chosen authorization value in the MTM, and creates the 8 
SRK and tpmProof. If the flag “deactivated”==FALSE, the cryptographic functions in the MTM may then be 9 
used. 10 

The MTM flag “deactivated” may be used to prevent the (obscure) attack where a MTM is readied for 11 
TPM_TakeOwnership but a remote rogue manages to take ownership of a platform just before the genuine 12 
owner, and immediately has use of the MTM’s facilities. To defeat this attack, a genuine owner should set 13 
disable==FALSE, ownership==TRUE, deactivated==TRUE, execute TPM_TakeOwnership, and then set 14 
deactivated==FALSE after verifying that the genuine owner is the actual MTM owner. 15 

Note that the “disable” and “deactivated” flags also affect the MTM after an Owner has been installed, but 16 
those properties are not described here. 17 

(See also the TPM Main specification [3] – TPM_TakeOwnership) 18 

End of informative comment:  19 

6.2.1 Remote or Local Owner 20 

Start of informative comment: 21 

Any engine within this specification may be designed to have a remote owner, who does not have physical 22 
possession of the mobile platform. A local owner could, of course, also use an engine designed for a remote 23 
owner, although in this case all of the management and control functions would need to operate through the 24 
remote owner interfaces. If the engine is not designed for a remote owner, the engine must have either a 25 
local owner, or else have no owner but allow a local User to take ownership. Such a local owner will have 26 
possession of the platform, and so can (for example) use assertions of Physical Presence.  27 

End of informative comment: 28 

The “TCG Mobile Trusted Module Specification” [5] defines two types of MTM to meet the requirements of 29 
two types of owner. An engine designed to have a remote owner (e.g. the Device Manufacturer’s engine) 30 
MUST support the type of MTM defined as a “Mobile Remote owner Trusted Module (MRTM)”. An engine 31 
designed to have or permit a local owner MUST support the type of MTM defined as a “Mobile Local owner 32 
Trusted Module (MLTM)”.  33 

In the case of a remotely owned engine, a general model is that the engine’s MRTM is already enabled and 34 
activated, and already has an owner set when the User takes possession of the device. This MUST be true of 35 
the Device Manufacturer’s Engine, for example. However, a remote owner MAY be able to take ownership at 36 
a later date, if not already set, through TPM_TakeOwnership (which is OPTIONAL within the MRTM command 37 
set). The remote owner MAY also be able to relinquish ownership through TPM_OwnerClear (which is also 38 
OPTIONAL for a MRTM). In all cases, the remote owner MUST be protected from a User attempting to remove 39 
the remote owner’s ownership of the engine, or attempting to disable or de-activate the engine’s MRTM, 40 
though in the case that the user is the Device Owner (DO) and the engine is on a DO controlled list then the 41 
user can always prevent the engine from booting at all. This is the fundamental difference between the 42 
“MRTM” and the “MLTM”. 43 

In the case of a locally owned engine, a general model is that the engine’s MLTM does not yet have an owner 44 
set when the User takes possession of the device; it MUST then be possible for the local User to take 45 
ownership. The User engine’s MLTM MAY already be enabled and activated; if not, the User will need to set 46 
those flags before taking ownership. The User engine’s MLTM MUST allow the local User to change the flags 47 
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using assertions of Physical Presence. For example, the DM Engine SHOULD allow the User to assert a physical 1 
presence, and then present that status to a User engine. If there is already an owner set in the User engine’s 2 
MLTM (e.g. someone previously used the device), then the local User MUST be able to remove that owner 3 
using an assertion of Physical Presence, i.e. with TPM_ForceClear, which MUST be supported by a MLTM.  4 

6.2.2 Local Owner Control of Secure Boot 5 

An engine with a local owner (i.e. a User engine) MAY also provide secure boot functionality. If so, the 6 
engine’s MLTM MUST support the local verification commands defined in Section 7 of “TCG Mobile Trusted 7 
Module Specification” [5]. Also, the engine MUST allow the local owner to act as the stakeholder in control of 8 
that secure boot functionality.   9 

In particular: 10 

• The local owner MUST be able to set the RVAI public key for the engine (see Section 6.3.1), that is to 11 
be used by the RTV and other verification agents of that engine.  12 

• The local owner MUST be able to control which PCRs are set as verifiedPCRs (see Section 6.3.1.2) in 13 
that engine’s MLTM .  14 

• The local owner MUST have exclusive control over which RIM_Auths’ TPM_Verification_Keys can be 15 
loaded into the engine’s MLTM, and hence over which external RIM_Certs are accepted by the 16 
engine’s MLTM.  In particular, the MTM’s integrityCheckRootData (see Section 6.3.1.1) MUST be set to 17 
NULL and the flag loadVerificationRootKeyEnable MUST be set to FALSE. 18 

• The local owner MUST have exclusive control over which internal RIM_Certs are generated by the 19 
engine’s MLTM (see Section 6.3.4.1), and over the counterRIMProtect used to revoke such internal 20 
RIM_Certs.  21 

Where such control affects a MLTM, it is fully specified within “TCG Mobile Trusted Module Specification”[5]. 22 
Note for instance that where the ownerAuth data is set, it is used to gate control over the local verification 23 
commands in preference to verificationAuth data.  24 

 25 

A secure boot User engine MAY have no owner set yet: in particular this will be the case on a User engine’s 26 
very first boot. In that case, there will be no valid internal RIM_Certs, and so the engine MUST follow a 27 
pristine boot process, as defined in Section 6.3.3.1. As this requires an RVAI public key to be set (and possibly 28 
IntegrityCheckRootData to be set as well), any “owner-less” secure boot SHOULD use a default combination 29 
of  RVAI/IntegrityCheckRootData/RIM_Auths/RIM_Certs provided by the Device Manufacturer for that engine4. 30 
This MUST provide a limited secure boot, just sufficient to enable the local User to securely take ownership, 31 
and establish their own secure boot control (including setting own RVAI key etc.) 32 

If the local owner chooses to relinquish ownership, it is RECOMMENDED that the default boot settings are 33 
restored, enabling a local User to take ownership again if so desired (and if the MLTM flags permit).  34 

                                       
4 This imposes ecosystem requirements on the RIM_Auths associated with the Device Manufacturer. 
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6.3 Lifecycle of a Secure Boot Engine 1 

Start of informative comment: 2 

This section outlines the basic view of the major processes during the lifecycle of a secure boot engine from a 3 
security perspective.  Each section will provide an outline of the basic functions that are used at that point in 4 
time and can provide a high level view of how the major elements come together to form a trusted 5 
environment. 6 

End of informative comment. 7 

Engines which do not support an RTV are not REQUIRED to be compliant with this section. 8 

6.3.1 Generation of the Root Verification Authority Identifier 9 

Start of informative comment: 10 

The Root Verification Authority Identifier (RVAI) is the public key that will be used to verify the RIM_Auths 11 
(the source providing and authorizing the external RIM_Certs) for each engine.  This public key should be 12 
integrity protected and either the key or integrity protection information must be stored in tamper resistant 13 
memory.  (see Section 5.2.1 for requirements)  14 

End of informative comment. 15 

The RVAI key-pair MUST be generated by the engine’s stakeholder.  The RVAI for the device manufacturer’s 16 
engine MUST be installed on the device during the platform manufacturing process, and (if known) the RVAI 17 
for other secure boot engines MAY also be installed at manufacture.  Once this key is installed, at any time if 18 
the RVAI (or integrity protection value) is found to have been tampered with, the engine MUST go to a 19 
“FAILED” state and block the platform from entering a “SUCCESS” state (see Section 7.1.2).  20 

Start of informative comment: 21 

Multiple methods may be used to install and protect the RVAI on the platform.  The public key may be 22 
directly incorporated as part of the ROM image on the device and used directly by the RTV to verify 23 
RIM_Auth_Certs.  It may also be programmed into One Time Programmable (OTP) storage either on the 24 
processor, or on a device that is cryptographically bound to that processor so that the memory device can not 25 
be replaced by exchanging an inexpensive component.   In this case the RTE would have to verify the 26 
cryptographic binding between the processor and the storage device, and then the RTV would load the RVAI 27 
from the memory device and then use it to verify the RIM_Auth_Certs.  It may also be possible to store a hash 28 
value of the public key in either ROM or in OTP and the key provided in general FLASH memory.  For this 29 
approach the RTV may load the key from memory and validate the value against the hash before it is used.  In 30 
the case where the ROM holds the key or the hash, the device manufacturer would provide the value to the 31 
processor vendor as part of the ROM mask and would receive the processors with this key or hash 32 
preprogrammed.  For the cases where the key or a hash is programmed into OTP this process should be done 33 
early in the product manufacture cycle to reduce the risk of rogue RVAIs from being introduced. 34 

End of informative comment. 35 

Special considerations apply either 1) where the RVAI for an engine is not known at manufacture, or 2) where 36 
the engine is only created on the platform after manufacture.  37 

In case 1), the Device Manufacturer MAY choose to initialize each engine with a copy of the DM’s own RVAI, 38 
but assign each copy a distinct key identifier (“my_id”). The DM can then hand over control of an engine after 39 
manufacture by signing a special RIM_Auth_Cert (i.e. a TPM_Verification_Key structure which gives the 40 
delegate key exactly the same key usage as the DM’s RVAI key had originally, in particular the ability to sign 41 
further delegates). The Device Manufacturer can control which engine is handed over by using a “parent_id” 42 
in the RIM_Auth_Cert that matches the “my_id” in the engine concerned.  43 

In case 2), the Device Manufacturer MAY provide a means to specify the RVAI key when an engine is created. 44 
Typically, the Device Manufacturer would define a proprietary command to create a new engine, and the 45 
RVAI key could be a parameter to that command. Alternatively, insertion of an RVAI key MAY be postponed 46 
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until someone has taken full ownership of the new engine, in which case the engine SHOULD provide a 1 
proprietary owner authorized command to set the RVAI.   2 

6.3.1.1 Setting of IntegrityCheckRootData 3 

Except in the case of a User engine, it is RECOMMENDED that either the RVAI key itself, or a hash of the RVAI 4 
key, is stored in the MTM by use of the field integrityCheckRootData defined in the MTM_ Permanent_Data 5 
(see “TCG Mobile Trusted Module Specification” [5].) This integrityCheckRootData MAY be set at manufacture 6 
of the platform, or MAY be set at Engine creation, or MAY be set when taking ownership of an Engine (see 7 
above). It is not REQUIRED that any of these three options is used, but one of the three options SHOULD be 8 
used if integrityCheckRootData is set. In case integrityCheckRootData is set, the flag 9 
loadVerificationRootKeyEnabled SHOULD be permanently set to FALSE, as the MTM would never be required 10 
to load a verification key without integrity checks or authorization.  11 

If no such record or integrity check of the RVAI is held in the MTM, then the MTM is dependent on the RTV of 12 
its Engine to load in the correct RVAI key at the start of boot. In such cases, the flag 13 
loadVerificationRootKeyEnabled SHOULD be initially set to TRUE on each power-up cycle, to enable the RTV 14 
to load in the RVAI key without integrity checks. The RTV MUST set the flag to FALSE (using 15 
MTM_LoadVerificationRootKeyDisable) before handing over execution control.  16 

6.3.1.2 Setting of VerifiedPCRs 17 

If the loadVerificationRootKeyEnable flag is set permanently to FALSE, then the verifiedPCRs selection in the 18 
MTM Permanent Data MUST be set permanently at manufacture, for remotely owned engines, or MUST be 19 
set/reset under owner authorization, for locally owned engines (using MTM_SetVerifiedPCRSelection). If the 20 
flag is initially set to TRUE on each power-up cycle, then the RTV MUST ensure correct settings for the 21 
verifiedPCR selection at each power-up (using MTM_SetVerifiedPCRSelection). 22 

6.3.2 Monotonic Counters 23 

To protect against Version Rollback attacks, and in general the installation of Revoked RIMs, three sorts of 24 
monotonic counter are defined within this specification. 25 

1. Each engine which supports secure boot MUST utilize its counterBootstrap counter to verify external 26 
RIM_Certs during “pristine” boot. The counterBoostrap counter SHOULD reside on the main processor (or else 27 
be cryptographically bound to the main processor), MUST be stored in non-volatile storage, and SHOULD resist 28 
tampering to reset it to a previous state to the extent defined in the “TCG Mobile Trusted Module 29 
specification” [5] section 6.1.4.   30 

A value of the counterBootstrap counter MUST be installed in the external version of each RIM_Cert used to 31 
verify a pristine boot5. The counterBootstrap value MUST be checked during pristine boot to ensure that the 32 
RIM_Cert being used is not a revoked version.  33 

Start of informative comment: 34 

This counter acts as a method to prevent roll back to old, revoked, memory images via physical attacks which 35 
completely erase the flash image of the device and attempt to reload it from scratch (e.g. as if the device 36 
had just been manufactured). As the same external RIM_Certs are used across multiple devices, the value of 37 
this counter needs to be globally synchronized for a class of devices. The counter value would be known to 38 
each RIM_Auth and would only be incremented if the security position of the platform is compromised by 39 
configurations authorized by previous RIMs.  This counter does not need to be incremented for each release 40 
of a new RIM, only for those cases where new sets of RIMs must be released to maintain the security posture 41 
for the platform.  This counter value would be shared across an entire platform configuration to provide 42 
reasonable maintenance.  Based on the use scenario, this value is not anticipated to be overly large. 43 

End of informative comment. 44 

                                       
5 This is an ecosystem requirement on each RIM_Auth that signs RIM_Certs used in pristine boot. 
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2. Each Engine MUST utilize a dedicated counterRIMProtect counter to verify internal RIM_Certs during 1 
“standard” boot. The counterRIMProtect counter SHOULD reside on the main processor (or else be crypto-2 
graphically bound to the main processor), MUST be stored in nonvolatile storage, and SHOULD resist 3 
tampering to reset it to a previous state to the extent defined in the “TCG Mobile Trusted Module 4 
specification” [5] section 6.1.4.   5 

A value of the counterRIMProtect counter MUST be installed in the internal version of each RIM_Cert used to 6 
verify a normal boot, and MUST be checked during normal boot to ensure that the RIM_Cert being used is not 7 
a revoked version.  8 

Start of informative comment: 9 

This counter acts as a method to prevent roll back to old, revoked, memory images via attacks which attempt 10 
to restore the image of the target Engine to a previous copy of the image for that target Engine. As internal 11 
RIM_Certs are unique to a device, the counter value here will also be unique per Engine instance. 12 

End of informative comment. 13 

3. Each Engine SHALL support an additional counterStorageProtect monotonic counter for all other purposes. 14 
The counterStorageProtect counter SHOULD be protected on (or bound to) the main processor, but MAY be 15 
used to support the off-chip storage images of other counter values. The counterStorageProtect counter MUST 16 
be stored in nonvolatile storage, and SHOULD resist tampering to reset it to a previous state to the extent 17 
defined in the “TCG Mobile Trusted Module specification” [5] section 6.1.4. 18 

Start of informative comment: 19 

This counter will be used to provide protection of stored images that in turn may contain data for other 20 
counters. This is a known technique for creating an indefinite family of counters out of a single protected 21 
counter. 22 

End of informative comment. 23 

6.3.3 Boot Processes 24 

6.3.3.1 Pristine Boot (factory install) 25 

Start of informative comment: 26 

Pristine boot for this specification is defined as an engine that boots where there is currently no local 27 
generated information available.  This condition will be experienced during the manufacture process, but 28 
may also be experienced if a significant upgrade causes all of the internal RIM_Certs to be removed or 29 
corrupted.  30 

The first step for the platform is the initial build in the factory.  The normal case for this set of operations is 31 
that the platform manufacturer is building the device and needs to load all of the initial parts of the system 32 
to get to an operational device.  The rogue case for this scenario is attackers that have installed a fresh 33 
FLASH device as one attack vector to the information or services available to the platform.  If the RTS is built 34 
using allocated resources on the processor, then the SRK is assumed to be installed by the processor provider, 35 
or is installed into the processor as the first step in the platform build process.  If the RTS is provided by a 36 
separate device, then the SRK will reside on that device and that device should be bound to the processor at 37 
this time so that the device providing the RTS function can not be replaced as an attack to circumvent the 38 
security controls.   39 

The DM’s RVAI or the data element providing the integrity protection should be installed into the processor as 40 
noted above.  If there will be an EK used, it needs to be installed by the processor supplier or generated and 41 
installed at this point in the process.  The AIK and the AIK credentials may need to be generated or installed 42 
into the RTS at this time. The manufacturer may also at this point personalize the MTM with an RVAI key, so 43 
that this key does not need to be explicitly loaded during the boot process (see below).  The extended 44 
software image now needs to be loaded into the platform memory to establish a working system.  This 45 
extended image should include software, configuration information, and all external RIM_Certs that are 46 
required to validate the software that is being installed.  The public RVAI key will be used to verify a 47 



TCG Mobile Reference Architecture   TCG Copyright 
Specification version 1.0    

Revision 5 26 June 2008  Page 62 of 89 
 TCG PUBLISHED 

hierarchy of keys (belonging to RIM_Auth_entities) used to verify RIM certificates.  Each engine may be 1 
initialized with the RVAI of the Device Manufacturer, which later hands over control of the individual engines 2 
to their respective RIM_Auths. 3 

When the platform comes out of reset, the DM engine’s RTE (if present) should perform a self consistency 4 
check and then build all the Roots of Trust (RoTs) and pass control to the RTM/RTV. The RTM should detect 5 
that there is software on the platform, and the RTV should check for a valid set of internal RIM_Certs to be 6 
used during the verified boot process.  The mechanism of the status check will be left to the platform 7 
designer.   8 

End of informative comment. 9 

If there are no valid applicable internal RIM_Certs, then the DM engine MUST attempt a pristine boot. As for a 10 
standard boot, measurement agents MUST perform target measurements in the intended sequence as defined 11 
by their configuration data, and the resulting TIMs MUST be verified against corresponding RIMs, as defined in 12 
6.3.3.2, but external RIM_Certs MUST be used to provide the RIMs. The platform will need to know where to 13 
find the store of external RIM_Certs to start the construction process.  This first level of construction is an 14 
operation of the RTV. The RTV will take each external RIM_Cert required to verify next level of operation and 15 
verify that it is signed by a valid RIM_Auth_Cert that is authorized to issue RIMs for this platform. If the RVAI 16 
is not already loaded into the MTM, then it SHOULD be loaded by the RTV using the MTM_LoadVerificationKey 17 
command with the parentKey field null.  For the DM engine, this will be the only verification root key that 18 
SHOULD be used by the MTM, and the MTM_LoadVerificationRootKeyDisable command SHOULD be issued to 19 
prevent any further root keys being loaded.  20 

While it is possible that each RIM_Cert may be signed directly by the RVAI for limited performance platforms, 21 
standard best practices recommend that the RVAI only be used to sign authorization certificates. Starting 22 
from the RVAI key, the trust chain for each RIM_Auth_Cert required to reach the next level of operation will 23 
be verified by the RTV using the MTM_LoadVerificationKey command.  Once each of the RIM_Auth_Certs has 24 
been verified, then each of the external RIM_Certs can be verified by using the MTM_VerifyRIMCert command 25 
with the external RIM_Cert in the rimCert field and the RIM_Auth_Cert in the rimKey field.  This process 26 
SHOULD be used to validate the structure and trust chain of the external RIM_Certs.     27 

During the above validation process, the RTV SHOULD read the value of the counterBootstrap counter using 28 
the TPM_GetCapability command (see [5], Section 8.1).  If any RIM_Cert or RIM_Auth_Cert indicates that the 29 
counterBootstrap counter has been increased, then the appropriately authorized certificate that will 30 
authorize the incrementing of the counter SHOULD be identified and the MTM_IncrementBootstrapCounter 31 
SHOULD be called 6 .  If the counter values in the certificates are the same value as the current 32 
counterBootstrap value, then the construction task may continue with no action required. 33 

Start of informative comment: 34 

The RTM can then measure the boot loading process and the RTV retrieves the external RIM_Certs that 35 
describe the boot loading process.  The RTV verifies that the measurement report by the RTM matches the 36 
measurement in the RIM_Cert describing the boot loading process.  The RTV uses MTM_LoadVerificationKey to 37 
load any RIM keys needed from the hierarchy that are not already included in the MTM.  The RTV then calls 38 
the RTS using MTM_VerifyRIMCertAndExtend to cause the RTS to verify the certificate using the loaded key, 39 
and then extend the measurement value stated in the certificate into the PCR stated in the certificate.  40 
When the RTV receives a SUCCESS indication, it executes the boot loader process and passes control to that 41 
verified software. 42 

End of informative comment. 43 

If any errors are encountered during the pristine boot process, then the Engine MUST go to a “FAILED” state 44 
(see Section 7.1.2). This pristine boot process MUST be completed and in a “SUCCESS” state before any “RIM 45 
Conversion Agent” (at least one per Engine) can run to do a certificate conversion (see Section 6.3.4.1), 46 
creating internal RIM_Certs ready for the next (standard) boot. During this conversion process, ownerAuth or 47 

                                       
6 This imposes an ecosystem requirement on the RIM_Auths. Some RIM_Auth needs to be authorized to sign 
the increment RIM_Cert and needs to do so whenever counterBootstrap has to be increased.  
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verificationAuth data MUST be entered into the engine, or otherwise made available to the engine. In the 1 
case where verificationAuth data is stored on the platform, it MUST therefore be sealed to the expected PCR 2 
state that will exist after the pristine boot is successfully completed, but before the conversion process runs.  3 

A similar process MAY apply to other engines on the platform during pristine boot i.e. an engine is started, 4 
discovers it has no internal RIM_Certs and attempts to boot using external RIM_Certs. Alternatively, the 5 
pristine boot process MAY be designed so that the DM Engine completes its own building, and then creates the 6 
other engines fully built, but in a simplified state. The other engines MAY not need their own pristine boot 7 
sequences.  8 

6.3.3.2 Standard Boot 9 

Start of informative comment: 10 

From the perspective of the platform user, the boot process is defined as the time from applying power until 11 
the user is able to perform interesting functions.  The primary boot will be defined from the time that power 12 
is applied until the fundamental capabilities are in place.  These capabilities include the roots of trust and 13 
system mechanisms that provide resource separation and management.  This primary boot operation is 14 
defined by the device manufacturer and includes all of the mandatory functions for at least the DM engine.  15 
The secondary phase begins once the primary boot has completed.  This phase includes the operating system 16 
configuration, user configuration and user applications that will be installed.   17 

The process of verifying the software on any Engine is performed by verification agents (as discussed in 18 
Section 5).  Each verification agent has access to a list of internal RIM_Certs.  19 

During standard boot the verification agent does not necessarily have to verify externally created signatures 20 
or do certificate parsing itself. All that is required is that there is a process (supported by the MTM) whereby 21 
the verification agent can load an internal RIM_Cert, and check the internal cert’s validity (i.e. that it is 22 
correctly signed by the Engine’s internalVerificationKey, and that the counter value is not less than the 23 
current CounterRIMPprotect value).  Provided the internal RIM_Cert is accepted as valid, then its contents 24 
can be used for verifying a current measurement.  This verification process is provided by the 25 
MTM_VerifyRIMCert or MTM_VerifyRIMCertAndExtend commands.  26 

End of informative comment. 27 

During standard boot, each measurement agent (starting from the RTM) MUST perform its Target 28 
Measurements in order of execution, as defined by its measurement configuration data, and where the 29 
configuration data requires it, a corresponding verification agent MUST check the results against RIMs. If the 30 
agents are implemented as separate functions, the measurement agent SHALL pass to the verification agent a 31 
label for the measurement, the PCR index to be extended, and the value to be extended. The verification 32 
agent SHALL identify the correct RIM_Cert by matching the measurement label and PCR index to 33 
corresponding fields in the RIM_Cert (see “TCG Mobile Trusted Module Specification” [5], section 5.2).   34 

The verification agent SHALL check that the measured value provided by the measurement agent (and the 35 
PCR index to extend, where passed by the measurement agent) matches the expected value in the RIM_Cert.  36 
If the values match then the processing will continue by the verification agent using a 37 
MTM_VerifyRIMCertAndExtend (or simple TPM_Extend) to extend the measurement into the target PCR. 38 
Otherwise if the measurement does not match the RIM_Cert value the engine SHALL either transition to a 39 
“FAILED” state or attempt an alternative execution path.   40 

The verification agent MUST also check for the condition where a target object which must be verified 41 
(according to the measurement configuration data) nevertheless has no RIM available. Then in this case the 42 
Engine MUST either transition to a “FAILED” state or attempt an alternative execution path.  43 

The verification agent MUST also ensure that before extending, the PCRs in the MTM match the prerequisite 44 
state (see Mobile Trusted Module Specification Section 5.2 [5]) defined by the RIM_Cert. This can be done in 45 
several ways: 46 

 47 
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• The check is done by the MTM, when the verification agent asks the MTM to perform an 1 
MTM_VerifyRIMCertAndExtend command. 2 

• The verification agent asks the MTM to perform a TPM_Quote of the relevant PCRs and checks the 3 
quote using the public half of the MTM’s AIK.  4 

• The MTM has some key sealed to the expected PCR values, and the verification agent attempts to use 5 
the key.  6 

If there is a mis-match, the Engine MUST either transition to a “FAILED” state or attempt an alternative 7 
execution path.  8 

If supported, the alternative execution path MUST evict from memory all trace of the target object that 9 
failed to verify. The alternative execution path MAY specify an alternative target object to execute in the 10 
case of a failure to verify an object. If there is no alternative target object, which is the case where the 11 
original target object was a mandatory function, the engine MUST transition to a “FAILED” state. If there is 12 
an alternative target object, the boot SHALL continue with that object according to the rules specified for 13 
standard boot. The alternative execution path MAY also extend a RIM_Cert into a PCR in order to record the 14 
failure of a target object. 15 

Start of informative comment: 16 

The check being performed by the MTM when the verification agent requests a MTM_VerifyRIMCertAndExtend 17 
command is the preferred approach, as it is simpler, and any verification failure is immediately detectable by 18 
the MTM, leading to suitable response mechanisms by the MTM (e.g. quarantining of sensitive data, shut-19 
down, alarms detectable by the rest of the Engine). Note that all the above methods require the MTM to be 20 
Enabled and Active, and to have an Owner installed. 21 

Note that a prerequisite state may be inserted into a RIM_Cert to enforce a specific sequence of boot. 22 

End of informative comment. 23 

6.3.4 Updates and Revocations 24 

6.3.4.1 External RIM_Certs and Internal RIM_Certs 25 

Start of informative comment: 26 

The full set of external RIM_Certs, RIM Validity Lists, RIM_Auth_Certs and RIM_Auth_Cert revocation 27 
information (RIM_Auth Validity Lists etc.) defines a complex privilege structure. 28 

It is not required that each verification agent (especially the RTV) is able to process this whole structure 29 
during each boot and hence determine what is really a valid RIM.  30 

This problem is addressed by using a special RIM Conversion Agent to process all of the external RIM_Certs 31 
and map from External RIM_Certs to Internal RIM_Certs. These Internal RIM_Certs can then be more easily 32 
handled by the RTV and other verification agents.  33 

End of informative comment. 34 

“External” and “Internal” RIM_Certs are defined in the “TCG Mobile Trusted Module specification” [5] section 35 
5.2. The rules for when to use external or internal RIM_Certs are summarized as follows:  36 

1. For pristine boot, an Engine MUST use external RIM_Certs directly. The RIM_Certs themselves MAY be 37 
revoked using the counterBootstrap monotonic counter.  38 

2. For standard boot, the Engine SHOULD use internal RIM_Certs previously converted from external 39 
RIM_Certs. It MAY use internal RIM_Certs previously converted from legacy Device Management protocols that 40 
are not RIM aware.  These internal RIM_Certs MAY be revoked using the counterRIMProtect monotonic 41 
counter.  If the counterRIMProtect is incremented by the platform that any internal RIM_Certs that have a 42 
lower value SHALL be considered revoked. 43 
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Any trusted RIM Conversion Agent MUST check that both the external RIM_Certs themselves, and any 1 
RIM_Auths in chains used to sign the external RIM_Certs, have NOT been revoked before doing the conversion. 2 
This check SHOULD be done by accessing up to date Validity Lists (but it MAY use any equivalent revocation 3 
checking mechanism for legacy DM, or MAY be implicit.)7 The RIM Conversion Agent MUST check that each 4 
RIM_Auth is authorized to sign each external RIM_Cert, by checking all the optional constraints on Device and 5 
Engine identifiers, PCRs, timlabels etc. in the RIM_Auth certificates.  6 

The MTM MUST authenticate the trusted RIM Conversion Agent using verificationAuth or ownerAuth data (as 7 
defined in “TCG Mobile Trusted Module Specification”). If a remotely-owned engine has no ownerAuth data, 8 
the verificationAuth data SHOULD be static and assigned at manufacture. The ownerAuth data MUST be used 9 
for locally owned engines, and verificationAuth MAY be a mirror of ownerAuth for remotely-owned Engines. 10 
The verificationAuth (or ownerAuth) MUST be used to run a RIM_Cert conversion command (MTM_InstallRIM). 11 
In most implementations, the trusted RIM Conversion Agent will reside on the device and the verificationAuth 12 
MUST be sealed to a PCR state which ensures that only a trusted conversion agent can access that data. 13 
Where ownerAuth data is used instead of sealed verificationAuth data, then the operation to create internal 14 
RIM_Certs MUST require owner input and control.  15 

Start of informative comment: 16 

The trusted nature of the RIM Conversion Agent will often require that function to exist on the platform and 17 
be validated by the RTV before allowing it to convert the RIM_Certs from external to internal format.  There 18 
may be some special use cases that will cause this agent to exist external to the platform. For these unique 19 
cases the process should be designed and implemented to use a trusted channel [OS-AP] between the MTM 20 
and the external agent.  21 

End of informative comment. 22 

The RIM Conversion Agent re-validates the authorization for all valid external RIM_Certs by calling the 23 
MTM_InstallRIM command. This creates a set of internal RIM_Certs. The MTM_InstallRIM command inserts the 24 
Engine-specific monotonic counter value Counter_RIMProtect into all the internal RIM_Certs (and this counter 25 
will be accessible to the MTM and verification agents during subsequent boots). 26 

These re-validated internal RIM_Certs can then be sorted into convenient lists of RIMs addressed to each 27 
verification agent in the Engine, and matched against Target Objects of measurement addressed to each 28 
measurement agent in the Engine. The label fields in the valid RIM_Certs help here.  29 

3.  For standard boot, the Engine MAY use external RIM_Certs directly.  30 

However, any verification agent that is trusted to call MTM_VerifiedRIMCertAndExtend with an external 31 
RIM_Cert MUST check that both the external RIM_Cert, and any RIM_Auth in the chain used to sign the 32 
external RIM_Cert, is fully authorized and has NOT been revoked before using the certificate. This check 33 
SHOULD be done by accessing up to date Validity Lists (but it MAY use any equivalent revocation checking 34 
mechanism, or MAY be implicit).  35 

The verification agent MUST also check that each RIM_Auth is authorized to sign each external RIM_Cert, e.g. 36 
by checking all the optional constraints on Device and Engine identifiers, PCRs, labels etc. in the RIM_Auth 37 
certificates.  38 

6.3.4.2 RIM Updates 39 

Once a platform is fielded there are often requirements to authorize updates to the software elements that 40 
were included in the original release.  The engine MUST be in a “SUCCESS” state before this update process 41 
begins.  If the engine cannot get to a “SUCCESS” state to perform this update, then the platform SHOULD be 42 
forced into a mode where the FLASH can be reloaded and the procedure for pristine boot can be followed.  43 
The following process describes an update to a single software object, and single RIM, but updates to 44 
multiple software items and RIMs at once can be handled in a very similar way.  45 

 46 

                                       
7 There is an ecosystem requirement that up to date revocation status information is available. 
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Start of informative comment: 1 

The next paragraph defines ecosystem requirements on the RIM_Auth responsible for the RIM update.  2 

End of informative comment. 3 

Each RIM_Auth whose target object needs updating SHALL prepare the software update package and include a 4 
new RIM_Cert that defines that package.  If the RIM_Auth signs Validity Lists, it SHALL sign a new Validity List 5 
containing the new RIM_Cert (and possibly omitting previous versions of that RIM_Cert).  6 

This package is then passed to the Engine via any suitable update protocol, as described in Section 6.3.4.6. A 7 
RIM Conversion Agent in the Engine SHALL verify/validate the corresponding external RIM_Cert. The RIM 8 
Conversion Agent SHALL also verify/validate the RIM_Auth that signed the new RIM_Cert using a certificate 9 
chain (if applicable) back to the RVAI key.  The RIM Conversion agent MUST determine what is a valid RIM by 10 
using a full path verification process (including checking for revocation status, checking all the optional 11 
constraints on Device and Engine identifiers, PCRs, labels etc. in the RIM_Auth certificates).  12 

Once the RIM_Auth has been verified, the information on the engine and the label in the RIM_Cert can be 13 
used to identify which RIM is being updated.   14 

The RIM Conversion Agent MUST validate that the external RIM_Cert counter value (if present) is the same or 15 
greater than the CounterBootstrap value associated with the platform, and if not, it MUST reject this new 16 
RIM_Cert.  If the certificate count is greater than the CounterBootstrap version associated with the platform 17 
then the CounterBootstrap version MUST be updated to match the new value in the certificate.  Because this 18 
counter is only used to validate incoming external RIM_Certs none of the existing internal RIM_Certs need to 19 
be modified based on this new input.   20 

If verified and validated, the RIM Conversion Agent SHOULD create a new Internal RIM_Cert using 21 
MTM_InstallRIM, and pass on the updated software for installation (and use during next boot). The old 22 
Internal RIM_Cert that corresponded to the update request SHOULD be removed from the Engine’s internal 23 
store of RIM_Certs. Any new Internal RIM_Cert MUST be added to the Engine’s internal store of RIM_Certs.  24 

 25 

6.3.4.3 Conversion of Legacy Device Management to Internal RIM_Certs 26 

Start of informative comment: 27 

A number of existing protocols for managing Mobile Devices have been defined by OMA, 3GPP and other 28 
bodies. In many cases, these protocols will be providing or updating code or other objects on the Device 29 
which will impact on an Engine’s security state.  30 

It may be assumed by the Device that where such sensitive objects are updated through “legacy” (i.e. non 31 
TCG-aware protocols) then any authorized update is implicitly providing a new target to measure and a new 32 
expected value of the measurement (i.e. the functional equivalent of the RIM).  33 

End of informative comment. 34 

A RIM Conversion Agent MAY also be called upon during legacy updates (as well as upon updates of external 35 
RIM_Certs). If legacy updates are supported, the RIM Conversion Agent MUST create (or add to) the set of 36 
valid internal RIM_Certs based on those updates.  37 

This technique provides a smooth way of migrating from legacy Device Management protocols towards 38 
protocols which are aware of the TCG specs and which can thus explicitly include external RIM_Certs.  39 

Note that where legacy Device Management is used, it MUST have the same security properties as were 40 
defined for the framework of external RIM_Certs (Source, Newness, Currency)8. Conventional code-signing 41 
(X.509) certificates with an effective revocation framework (e.g. OCSP) would be acceptable here.  42 

                                       
8 This is an ecosystem requirement on the whole Device Management protocol, not just the device. 
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6.3.4.4 Post factory RIM installation 1 

The operation for adding a new RIM_Cert once a platform is fielded is exactly as for the update path, defined 2 
in 6.3.4.2, except that no early version needs to be removed.   3 

As new software is required to be measured and verified, the Engine may find it also needs to modify the 4 
measurement configuration data of an associated measurement agent. The RIM Conversion Agent MAY create 5 
a further internal RIM_Cert to protect this modified configuration data.  Alternatively, the measurement 6 
agent and its configuration data SHOULD have been updated as well as part of the software update package9. 7 
The exact implementation decision here is specific to the Engine stakeholder.  8 

 9 

6.3.4.5 RIM revocation 10 

During an update process, it MAY happen that existing Internal RIM_Certs need to be removed from the set of 11 
authorized RIMs because of revoked RIM_Auths or revoked external RIM_Certs. If Internal RIM_Certs are not 12 
utilized then this section does not apply.  13 

A RIM MAY also be removed entirely, based on a larger update that makes an old component obsolete, or just 14 
removes the component from the verified boot process. The platform MUST be in the “SUCCESS” state before 15 
the process of RIM revocation begins.   16 

RIM_Auths SHOULD send updated revocation info (preferably a RIM validity list) to the Engine via any suitable 17 
update protocol, as described in Section 6.3.4.6. Refer to Sections 5.2.3 and 5.2.5 for requirements on 18 
Storage and use of RIM validity lists. 19 

The RIM Conversion Agent MUST review the revocation info to confirm that all of the external RIM_Certs that 20 
were used to create current internal RIM_Certs are still considered valid by the RIM_Auth.  If the RIM 21 
Conversion Agent finds an internal RIM_Cert whose external counterpart has been revoked, then it MUST 22 
remove that RIM_Cert from the Engine’s internal store.  If there is a RIM_Auth whose cert has been revoked 23 
by the parent RIM_Auth, then the RIM Conversion Agent MUST identify all internal RIM_Certs that were 24 
authorized by that RIM_Auth and remove them all from the internal store.   25 

Once all of the revoked Internal RIM_Certs have been removed, then the RIM Conversion Agent MUST re-26 
validate the complete set of Internal RIM_Certs for the Engine by running MTM_InstallRIM with an 27 
incremented counter value. Once the new set of Internal RIM_Certs has been created, the RIM Conversion 28 
Agent MUST then increment the Engine-specific counterRIMProtect. To complete the RIM revocation process, 29 
all the old RIM_Certs MUST be removed from the Engine’s internal store of RIM_Certs and the new RIM_Certs 30 
MUST be added.  31 

Where a RIM is being removed with no replacement, then the engine MUST modify the measurement 32 
configuration data of an associated measurement agent, either to skip a measurement entirely, or to measure 33 
without verifying. Where the measurement configuration data was protected by an internal RIM_Cert, the RIM 34 
Conversion Agent MUST create a further internal RIM_Cert to protect this modified configuration data.  35 
Alternatively, the whole measurement agent and its configuration data MAY be updated as part of the 36 
software update package. The exact implementation decision here is specific to the Engine stakeholder, and 37 
the supplier of the update package.   38 

 39 

6.3.4.6 Protocol for Updating RIM_Auths and External RIM_Certs 40 

This version of the specification does not define a specific protocol for providing (external) RIM_Certs, 41 
RIM_Auth_Certs and Validity Lists to an Engine.  42 

 43 

 44 

                                       
9 This approach imposes an ecosystem requirement on the party supplying the update package. 
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Start of informative comment: 1 

In abstract, such a protocol may be summarized as follows:  2 

Authorized Party       Engine 3 

(Optional)            Get_RIMAuthsAndCerts_Req({Parameters})  4 

   � Get_RIMAuthsAndCerts_Resp ([RIM_Auth_Certs], 5 

          [RIM_Auth_Validity_Lists], [RIM_Certs], [RIM_Validity_Lists], {Other Data})                  6 

(Optional) The Engine discovers it needs updated RIM_Certs, RIM_Auth_Certs or Validity Lists. This may 7 
happen because the Engine discovers one of its existing Validity Lists has expired, or the Engine may receive 8 
an update for a target object that is currently protected by a RIM, and needs to find an updated RIM_Cert in 9 
order to install that object.  10 

The Engine contacts an authorized party to receive updated data. The “authorized party” may be a RIM_Auth 11 
or the Engine Owner, may be a Device Management Server, or may just be a web site pre-configured in the 12 
Engine. The Engine may pass optional parameters in the update request indicating which objects it needs 13 
updating (e.g. labels for RIM_Certs or RIM_Auth key_ids).  14 

(Required) An authorized party provides an update package of data to the Engine containing the following:      15 

� List of RIM_Auth_Certs, as requested by the Engine, or where necessary to build a certificate chain 16 
for other certs delivered in the package. 17 

� List of RIM_Auth_Validity_Lists, as requested by the Engine, or where necessary to validate 18 
RIM_Auth_Certs delivered in the package.  19 

� List of RIM_Certs, as requested by the Engine, or where necessary to protect other data delivered in 20 
the package.  21 

� List of RIM_Validity_Lists, as requested by the Engine, or where necessary to validate RIM_Certs 22 
delivered in the package. 23 

� Any other data that might be associated with RIMs (e.g. updated objects themselves, updated 24 
measurement agents or MA configuration data).  25 

Note that an update package may be provided by an authorized party at any time, with or without a prior 26 
request from the Engine. There are no assumptions on the security of the underlying protocol used to deliver 27 
the update package (or to send the request for updates). Nor are there any restrictions on means used to 28 
transport the update to the Device: a variety of methods are acceptable (e.g. http, email, WAP-push, 29 
broadcast, memory card, Bluetooth.)  30 

End of informative comment. 31 

 32 

6.3.4.7 Protocol for Reporting RIM_Auths and RIM_Certs 33 

This version of the specification does not define a specific protocol for an Engine to report its current set of 34 
RIM_Certs, RIM_Auth_Certs and Validity Lists to an Authorized Party. However, it is expected that such 35 
reporting is done as part of remote attestation.  36 

It is not RECOMMENDED to provide certs which uniquely identify the device during attestation. As a further 37 
privacy protection, the reported certs MAY also be encrypted to the Authorized Party. 38 

 39 

 40 

 41 

 42 
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Start of informative comment: 1 

In abstract, such a protocol may be summarized as follows:  2 

Authorized Party       Engine 3 

(Optional)     � Get_RIMAuthsAndCerts_Req({Parameters}) 4 

     Get_RIMAuthsAndCerts_Resp([RIM_Auth_Certs],  5 

      [RIM_Auth_Validity_Lists], [RIM_Certs], [RIM_Validity_Lists], {Other Data})    6 

(Optional) An Authorized Party requests to know some information about an Engine’s current set of 7 
RIM_Certs, RIM_Auth_Certs or Validity Lists. This request may be implicit or explicit during a remote 8 
attestation event, or may occur during an update event as described above, e.g. where the Authorized Party 9 
wishes to know what the Engine currently has before providing any updates. 10 

The Engine may pass optional parameters in the request indicating which specific objects it needs to know 11 
about from the Engine, and a nonce to be included in any signed response.  12 

(Required) The Engine digitally signs a response to the Authorized Party containing any or all of the following 13 
information (e.g. as requested by the Authorized Party):      14 

� List of RIM_Auth_Certs currently accepted as valid by the Engine 15 

� List of RIM_Auth_Validity_Lists currently stored by the Engine 16 

� List of RIM_Certs currently accepted as valid by the Engine (typically these will be internal RIM_Certs) 17 

� List of RIM_Validity_Lists currently stored by the Engine  18 

� Any other data that might be associated with RIMs and used to prove that the Engine is using RIMs 19 
correctly (e.g. measurement agent configuration data).  20 

Such signed data may be provided by default to certain Authorized Parties, even without an explicit request.   21 

End of informative comment. 22 

The reporting key MUST have a credential proving to the Authorized Party that the key belongs to the Engine 23 
concerned. For security reasons, this key MUST NOT be an Attestation Identity Key. This is because the AIK 24 
can not sign arbitrary data as this would allow forging of TPM_Quote results. Instead, the Engine MUST 25 
generate an additional key-pair for signing reports, and have the public half of the key signed by an 26 
Attestation Identity Key (using TPM_CertifyKey) 10.   27 

6.3.5 Backup, Recovery, Maintenance and Migration 28 

6.3.5.1 Backup of internal RIM_Certs 29 

In this version of the specification, backup mechanisms for the software components of the product are not 30 
REQUIRED and not defined.  There are no defined protocols for backing up and recovering RIM_Certs. 31 

Start of informative comment: 32 

The internal RIM_Certs that have been created by the Device are used in the process of validating the 33 
software to establish the trust level.  The internal certs are integrity protected using the MTM.  The platform 34 
may have an option to read the entire set of internal RIM_Certs as a block of data that can then be exported 35 
to some external storage site.  That external storage site may be accessed through any communication 36 
channel available to the platform for storage.   37 

End of informative comment. 38 

                                       
10 A hash of the RIM_Auths/RIM_Certs report could be included within the “externalData” input to TPM_Quote,. 
But as the “externalData” could also be provided by any party during a standard integrity challenge (as a nonce), 
there is no guarantee it is the hash of a correct report.  Accordingly, a signing key other than an AIK is needed.   
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6.3.5.2 Recovery of internal RIM_Certs to original device 1 

If an engine determines that the set of internal RIM_Certs are missing or corrupted then it MAY attempt to 2 
replace them from a backup version.  The platform state will be in the “INITIALIZATION” state (see Section 3 
7.1.2) as it starts up and an optional feature of this state may be a limited communication channel that 4 
allows the backup set of internal RIM_Certs to be restored to the device.  Once the information is restored 5 
then a reset MUST be triggered to start the standard boot process as defined earlier in this section.   6 

Start of informative comment: 7 

The set of internal RIM_Certs will be verified before use if they are restored to the same MTM, and their 8 
integrity will be validated.  The boot process will verify the MTM_COUNTER_REFERENCE in each RIM_Cert 9 
against the Engine CounterRIMProtect to protect against any attempt to roll back to previously valid but now 10 
revoked RIM_Certs.  There should not be any security implications of backing up the internal RIM_Certs and 11 
allowing them to be restored to the same platform. 12 

End of informative comment. 13 

If this restore option is not available in the “INITIALIZATION” state, then the only recourse will be to reload 14 
the platform memory and follow the procedure defined for a pristine boot.  15 

6.3.5.3 Recovery of internal RIM_Certs to replacement device 16 

At present this type of operation is out of scope for this version of the specification.   17 

Start of informative comment: 18 

While it might be possible to define a path using the maintenance features of the MTM (if supported) to 19 
obtain a set of internal RIM_Certs from a backed up set of internal RIM_Certs on another device, this path is 20 
not currently defined.  21 

End of informative comment. 22 
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6.4 Debug Mode 1 

Start of informative comment: 2 

 3 

The platform has multiple levels of debug capability. A technician proves his permitted level of access using a 4 
cryptographic challenge and response protocol. 5 

At the lowest debug level, the entire platform is rebooted into a special state, where the platform erases all 6 
data belonging to all Trusted Services in all engines. When debug has finished, the platform is rebooted and 7 
the user is prompted to load protected backups, to restore previous secrets. This mode is typically used when 8 
data backups are available, or can easily be reinstalled from scratch. 9 

At an intermediate level, the technician can execute test routines but not touch sensitive data. This mode is 10 
typically used when data backups are not available and are difficult to reinstall from scratch. 11 

At the highest level, the technician has full access to all platform resources with the exception that he 12 
cannot inspect or copy the values that the platform uses as keys. This mode is typically used when data itself 13 
appears to be causing faulty operation. 14 

A platform may offer a trusted authenticated mode for the intermediate and high levels of trust.  This may 15 
require a technician to authenticate the tools and/or personal credentials to receive authorization to 16 
temporarily enable these debug modes.  In these cases it may not be required to reboot the platform if the 17 
control methods are proven sufficient to protect the information on the platform. 18 

 19 

End of informative comment. 20 
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7. Requirements For Maintaining Integrity 1 

As discussed in Section 4.1.2, engines in a mobile platform are generally not REQUIRED to support an RTV. All 2 
normative statements in this section apply to an engine conditional on that engine supporting an RTV.  3 

As discussed in Section 5, the DM’s Engine MUST support an RTV, and any other engines with remote owners 4 
(i.e. owners who are not local Users of the platform) SHOULD support an RTV. An engine with a local owner 5 
(i.e. a User engine) MAY support an RTV.   6 

 7 

 8 
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7.1 Operations 1 

7.1.1 Introduction 2 

Start of informative comment: 3 

Previous sections (see especially Section 5) have addressed the requirement that the platform must boot into 4 
a pre-specified trusted state.  This section focuses on maintaining and ensuring a trusted state after the boot 5 
process, in the face of detected runtime failures or threats. Run-time protection of data assets and a 6 
platform threat response is needed by all the use cases foreseen by the Mobile Phone Working Group [4].  7 

For simplicity, the five Engine states described in Section 4.1.1 are collapsed into three states. The “Engine 8 
Reset” and “RoT Initialization” states are collapsed into an “INITIALIZATION” state. The “Engine-Loading” 9 
and “Engine-Verified” states are collapsed into a “SUCCESS” state. The “Engine-Failed” state is relabelled as 10 
a “FAILED” state. The collapsed transition diagram between these states is shown below (Figure 7): 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

Ideally, the Device would completely prevent any changes, deliberate or accidental, that impact the trusted 30 
state of the Device. This is called a “Preventative Approach” and consists of mechanisms to ensure that the 31 
Device remains in a “SUCCESS” state throughout its run-time operation. In addition to such an approach, it is 32 
desirable to give some components high levels of protection against physical and software attack, and then 33 
use these components to provide fault detection and secure response services to the rest of the Device.  34 
Effectively, this foresees that the Device may at some point transition out of a “SUCCESS” state into a 35 
“FAILED” state, and provides mechanisms to limit the consequences. This approach is termed the “Reactive 36 
Approach”.  37 

End of informative comment. 38 

 39 
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Figure 7. Engine State Machine and Transition Diagram 
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7.1.2 Security States 1 

Start of informative comment: 2 

Platform State Machine 3 

The notion of a “SUCCESS” or a “FAILED” state needs to be phrased quite carefully to avoid artificially 4 
restricting possible implementations. A "Platform Secure State Machine" here serves as an abstraction, rather 5 
than some specific running process. Crudely speaking, the abstraction splits the platform's numerous 6 
microstates into three big groups labelled “INITIALIZATION”, "SUCCESS" and "FAILED". Then, for example, 7 
whenever the platform transitions from any one of the Success states into any one of the Failed states, the 8 
(abstract) State Machine transitions from “SUCCESS” to “FAILED”. The other transitions are similar.  9 

The existence of a "real" Platform Secure State Machine, coded within the platform, is not a requirement. In 10 
particular, there doesn’t have to be a specific variable in protected storage on the platform which tells the 11 
platform whether it is “INITIALIZATION” or “SUCCESS” or “FAILED” (and with the response by the platform 12 
dependent on the value of this variable).  13 

End of informative comment. 14 

 Difference between “SUCCESS” and “FAILED” States 15 

To start with, consider a platform with just a single Engine. To avoid making an arbitrary split, there is a 16 
simple stipulation. The “SUCCESS” state is at least one in which there is some confidential, protected 17 
information available on the platform, and such data MUST NOT be available in the “FAILED” state.  18 

Thus the RTS MUST be operational in a “SUCCESS” state, and MUST NOT be operational in a “FAILED” state. If 19 
the RTS is "on", that means at least some secret keys are available (such as the EK and SRK). If "off", then 20 
clearly no secret keys or other confidential info are available, unless they were being temporarily stored 21 
outside the RTS (and if they were, they SHOULD now be erased to stay confidential).  22 

Start of informative comment: 23 

Notice that the implication of an RTS not available is that the RTR is also unavailable (it can't report the state 24 
without PCR values or keys). It also means that the RTM/RTV and other measurement/ verification agents 25 
can't work: they have no way to extend PCRs or verify their correctness against a RIM_Cert. So shutting down 26 
the RTS effectively shuts down all the other Roots of Trust as well, or at least forces them to be suspended.  27 

• There may be other consequences of a “FAILED” state as well (such as a forced shut down or 28 
suspension of all platform activities), but the above is the minimum the specification mandates. Out 29 
of scope for the specification and left to the platform implementation are the following decisions: 30 

o Whether there are one or more state indicator variables on the platform, and what processes 31 
are authorized to update them.  32 

o What, if any alerts will be delivered to the user, operator, other software, etc, when the 33 
platform state changes to "FAILED".  34 

o What services will still be available after the state changes to "FAILED" (for example 35 
emergency calls, flash light, camera, broadcast reception, etc). 36 

o Whether the platform can keep running or not without an RTS (or other RoTs). Clearly, if it 37 
can't by design, then the only thing that can happen next is a reboot. If it can keep running, 38 
then there SHOULD be a user warning, but the user could decide to keep the platform going 39 
with severely degraded functionality.  40 

Transition Control through RIMs  41 

Simply having the RTS “on” or “off” can't be the sole definition of a “SUCCESS” state as this transition needs 42 
to be controllable (via RIMs). Also, there is the initial state in which an Engine starts up. This will be one 43 
where the RTS is not fully Operational, but is on the way to becoming Operational, and where nothing has yet 44 
been verified. So define the following equivalences: 45 

End of informative comment. 46 
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 “INITIALIZATION” State 1 

== RTS not (fully) Operational, but can become Operational 2 

== Since platform start-up, no TIMs have yet been verified against RIMs. 3 

 4 

     “SUCCESS” State  5 

== RTS Operational  6 

== Since platform start-up, all TIMs for mandatory functions have matched corresponding RIMs 7 

 8 

     “FAILED” State 9 

== RTS not Operational, and cannot become Operational  10 

== Since platform start-up, some TIM for a mandatory function has failed to match a RIM 11 

Start of informative comment: 12 

This defines the transition from a “SUCCESS” to a “FAILED” state. It also defines the reverse transition – the 13 
only way to get “out” of a “FAILED” state is to do a reboot and hence go back through an “INITIALIZATION” 14 
state. Finally, note that if the very first verification during boot fails, then the state will transition directly 15 
from “INITIALIZATION” to “FAILED”.  16 

This may seem a bit restrictive, but it does make operational sense. In a “FAILED” state, the RTS has been 17 
switched off (or put into a non-functional state). This means the only way to get it “on” again safely (and 18 
with a safe and consistent set of PCR values), is via a reboot. The analogy in existing TCG specs would be with 19 
a MTM failing a self-test: it is not possible to recover from that without a reboot.  20 

Also, it clarifies the concept of a “FAILED” state as in some sense a fatal error, rather than a recoverable 21 
error, requiring a special Reactive Response. Arguably, if a platform was able to securely “recover” itself 22 
through normal operation, then it never really left “SUCCESS”.   23 

    24 

Multi-Engine Transitions 25 

The above definitions related to a simple model where there is one platform wide security state, and one RTS 26 
for the platform. In effect, there is the DM's Engine and no other Engines. 27 

As the “FAILED” state is rather fatal, greater flexibility requires a continuum of degraded states down from 28 
"SUCCESS" to "FAILED", rather than just a binary split. It does seem rather inflexible for a single RIM/TIM 29 
mismatch to be able to massively impair or force a reboot of the whole platform but not do something less 30 
drastic (e.g. just shut down some services).  31 

Nevertheless, the same basic concept can give the required flexibility through the "Multi-Engine" design.  32 

End of informative comment. 33 

 34 

If instead the platform has several Engines, each with its own RTS (possibly logical rather than physical), 35 
there are several Engine specific Secure State Machines: 36 

 37 

     DM's Engine “SUCCESS”  38 

== DM's Engine RTS Operational  39 

== Since DM Engine start-up, all TIMs for DM Engine mandatory functions have so far matched RIMs 40 

 41 
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     Engine 2 “SUCCESS”  1 

== Engine 2's RTS Operational 2 

== Since Engine 2 start-up, all TIMs for Engine 2 mandatory functions have so far matched RIMs 3 

              4 

and so on.  5 

Start of informative comment: 6 

The implication is that a RIM mismatch could shut down the RTS for just one Engine (Communications 7 
Carrier’s Engine, User Engine, SP Engine) but keep other RTS's on the platform going. This would enable the 8 
platform as a whole to have a partially degraded state without complete degradation.  9 

It would still be the case that for any particular Engine, the only way to get that Engine out of a "FAILED" 10 
state and back into a "SUCCESS" state would be to restart that Engine. However, notice that the DM's Engine 11 
could attempt such a restart for another Engine on the platform without rebooting the whole platform.  12 

The worst case degradation would be for the DM's Engine to go to a "FAILED" state. There is no way out of that 13 
without rebooting the DM's Engine (and hence the entire platform). So it makes sense to equate the 14 
maximally degraded “FAILED” state for the entire platform with the “FAILED” state for the DM's Engine. 15 

Notes on Debug Mode 16 

Depending on how debug mode works, a debug run of the Device can be modelled as a run which never 17 
actually enters the “SUCCESS” state in the first place. The Debug state may be a special sort of 18 
“INITIALIZATION” state with its own boot-up rules.  19 

Alternatively, if the Device can be switched into Debug mode mid-operation, this will generally induce a 20 
transition out of “SUCCESS” to “FAILED” and will involve all the Reactive consequences (RTS shuts down, user 21 
warnings etc.) Whether the Device is able to be meaningfully debugged under those circumstances is a bit 22 
doubtful; it certainly can’t be switched out of debug mode again without a re-boot.  23 

The final alternative is a form of limited debugging which enables the Device to remain in a “SUCCESS” state. 24 
The RTS remains operational while debugging, but its stored secrets are protected from exposure to the 25 
debug operator, and the platform integrity as a whole is not affected by the debug operations.  26 

End of informative comment. 27 

 28 

7.1.3 Protecting Mandatory Functions 29 

The MPWG approach is really a combination of the Preventative and Reactive approaches. Run-time integrity 30 
is REQUIRED to protect the integrity of mandatory platform functions.  31 

Start of informative comment: 32 

Mandatory platform functions need to be understood here in an operational sense as "functions which are 33 
defined by the manufacturer – and other external authorities empowered by the manufacturer - as essential 34 
for proper and secure operation of the platform".  35 

Exactly as discussed in Section 5 for boot-time integrity, the presence of such functions is defined by TIMs 36 
matching RIMs, which is equivalent to a “SUCCESS” state. The protection of such mandatory functions needs 37 
to be met in part by the RTS (see later), but also met by Verification Agent(s) running within the platform. 38 
These are not necessarily the Root of Trust (e.g. RTV), although the RTV must support such VAs through a 39 
transitive trust chain (again see later).  40 

The protection of mandatory functions can be understood with reference to three classes of attack on the 41 
Device, of increasing power: 42 

 43 
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Attack 1. Threat handled by a preventative response. This sort of attack is resisted by the platform, enabling 1 
it to remain in a “SUCCESS” state throughout, and the mandatory functions are never impaired. 2 

Attack 2. Threat handled by a reactive security response. This sort of attack impairs some of the platform's 3 
mandatory functions (causing TIMs not to match RIMs).The platform transitions to a “FAILED” state, but the 4 
security response to such a state is not impaired. In particular, confidential material is no longer available to 5 
the platform. Or the whole platform operation may be suspended. 6 

Attack 3. Threat not handled by any response. In this case, the attack evades all preventative responses, and 7 
also impairs the reactive response. Nothing can be guaranteed about what happens then. Behaviour in 8 
circumstances of Attack 3 is outside the scope of this specification. 9 

It is understood that manufacturers cannot prevent Attack 3 altogether, just ensure that it requires highly 10 
advanced techniques/powers outside the scope of the protection profile covering the platform’s most 11 
protected capabilities. So the platform's compliance to this spec is covered by the conditions of the 12 
protection profile.  13 

Notice that if mandatory functions were regarded as absolutely mandatory, then the specification would have 14 
to say that Attack 2 can't happen. In that case Attack 2 would require techniques/powers outside the scope of 15 
a protection profile covering the entire platform. This would be much more expensive/difficult to engineer. 16 
Hence we consider a reactive response as allowed within the specification, and define mandatory support to 17 
enable this response.  18 

End of informative comment. 19 

 20 
In addition to specifying mechanisms for, and requiring runtime integrity protection for mandatory functions 21 
and components, this specification also allows for these mechanisms to be used to protect the runtime 22 
integrity of discretionary platform components, and it is RECOMMENDED that the runtime integrity of 23 
discretionary platforms components is protected in this way. For simplicity, the protection mechanisms are 24 
defined to be the same as for protecting the mandatory functions:  it is just that they are directed to 25 
functions running in the discretionary domain (e.g. for a platform Engine other than the Device 26 
Manufacturer’s Engine, running in the discretionary domain) or to non-mandatory functions running in the 27 
mandatory domain.   28 

7.1.4 Application Integrity and Data Integrity 29 

Start of informative comment: 30 

These mandatory features (and most of the recommendations) are addressed to the integrity of functions, 31 
that is, in general, to applications running on the Device. This does not mean that data integrity is 32 
unimportant, simply that it is difficult to address at the platform level in either a preventative or reactive 33 
response.  34 

In most cases, it is expected that the application code to be protected on the Device is fixed, or else changes 35 
relatively infrequently (at install of new applications). This makes it relatively easy to compare the 36 
applications that are actually installed or running on the Device with reference images of what they are 37 
supposed to be.  38 

By contrast, data will change frequently, on each run through an application, on input and output from the 39 
Device, and at the user’s discretion. Also the location of such data is highly mobile: there is no reason to 40 
expect it to remain in a fixed location in the Device. This makes it virtually impossible to decide in advance 41 
what is “good” data (and hence prevent changes to it) or decide after the fact what is “bad” data (and hence 42 
trigger a reaction).  43 

In general, where data integrity is vital, it is recommended to protect it through applications, and then to 44 
protect the integrity of those applications. Wherever the application writes data needing integrity protection, 45 
it should add a redundancy check or hash (which protects against accidental corruption) or a cryptographic 46 
MAC or signature (which protects against deliberate tampering). Wherever the application reads data needing 47 
integrity protection, it should verify the redundancy check or the MAC/signature.  Further, the application 48 
must be designed to strictly segregate data from its own code (thus avoiding unpredictable behaviour and 49 
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attacks such as buffer overruns). Finally, the application code can be integrity protected by the platform, 1 
giving a complete solution.  2 

Thus it is sufficient for the spec to define means to protect application integrity (through the RTS, VAs etc.) 3 
and give applications the means to protect data integrity where needed (through secure storage of integrity 4 
keys by the RTS). 5 

End of informative comment. 6 

 7 
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7.2 Preventative Methods 1 

Start of informative comment: 2 

The aim of preventative measures is to keep the state at "SUCCESS", either for the platform as a whole 3 
(mandatory functions) or for a particular Engine (discretionary functions). There is a choice of techniques for 4 
preventing transitions out of a “SUCCESS” state.   5 

End of informative comment. 6 

7.2.1 Hardware Protection 7 

One or more forms of hardware protection MUST form the basis of any preventative approach.  The most 8 
basic form of hardware protection is implementation of program code in ROM and storage of critical and 9 
unchanging data in ROM and/or One Time Programmable (OTP) memory.  More advanced levels of additional 10 
hardware protection (epoxy coverings, protection against power analysis and fault induction attacks) can then 11 
be added to protect this ROM and OTP.  12 

These levels of hardware protection will be defined in a TCG Protection Profile. The design intention is that 13 
capabilities protected by hardware cannot be interfered with either by rogue software (installed onto the 14 
Device post manufacture) or by physical attack on the Device.  15 

Such hardware protected capabilities are REQUIRED to implement the Roots of Trust, and are REQUIRED to 16 
enforce a security response on exiting a “SUCCESS” state. Note that this requirement does not mean the 17 
Roots of Trust and security response mechanisms must actually be implemented in hardware, but that their 18 
implementations are protected by hardware.  For example the code implementing the Root of Trusts could be 19 
checked by a function implemented in ROM code (hardware) which compares a hash of the code 20 
implementing the roots of trust code with an expected value stored in OTP memory (hardware). 21 

7.2.2 Software Isolation 22 

Start of informative comment: 23 

With regard to software-based preventative approaches, the basic method is code isolation, that is, more 24 
trusted code is made inaccessible to less trusted code.  An example of such code isolation would be code 25 
running in dedicated hardware (e.g. a TPM chip). A more flexible example is a runtime “trusted execution 26 
environment” that is isolated from the main OS and used for security critical functions. An even more flexible 27 
example is “full virtualisation” whereby the total device code can be divided into many sections, all of which 28 
are isolated from each other. Effectively, each piece of code “appears” to be getting the machine all to 29 
itself, and cannot interrupt the function or access the protected memory of other code.  30 

End of informative comment. 31 

The design intention is that capabilities protected by software isolation cannot be interfered with by other 32 
“normal” software.  33 

Such software isolated capabilities are REQUIRED to implement the Roots of Trust and at least one run-time 34 
Verification Agent, and are REQUIRED to safeguard the Roots of Trust if the platform exits a “SUCCESS” state.  35 

7.2.3 Software Simplification 36 

Start of informative comment: 37 

It is commonly accepted that it is easier to certify that a given program code has no errors, if that code is 38 
limited in size and complexity.  This leads to the approach of using a small kernel for all resource access.  39 
This small kernel is executing at the maximum privilege level.  All other code, applications and the largest 40 
part of the operating system is executing at lower privilege levels.  To have a further distinction in privilege 41 
level between the operating system code and the application code, two more privilege levels are needed in 42 
addition to the maximum (kernel) privilege.   43 

End of informative comment. 44 
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The design intention is to code a small kernel which does not have any errors. This gives full protection not 1 
only against malicious application code but also against undesirable behaviour arising from programming 2 
errors, and active exploits of such behaviour. This also ensures that any privilege restrictions intended to be 3 
imposed by the OS (see below) are in fact imposed.  4 

It is conceivable that attack code acquiring kernel mode privileges could subvert the Roots of Trust, interfere 5 
with platform Verification Agents that detect an exit from a “SUCCESS” state, or prevent the correct security 6 
response on exiting a “SUCCESS” state.  7 

The Device design MUST provide protection ensuring that attacks using kernel mode privileges could not 8 
subvert the Roots of Trust, OR ensure that the kernel is of sufficiently low complexity as to be certifiably 9 
resistant to such attacks.   10 

7.2.4 Software Restriction 11 

Start of informative comment: 12 

At the Device OS level, a comparatively simple and inexpensive approach is to not provide any tools to import 13 
native code onto the platform. If download of applications is required (it may not be required), this is only 14 
enabled via an application environment based on a virtual machine. The virtual machine’s strict security 15 
model allows importing and executing of interpreted code only.  The security policy for the virtual machines 16 
is set up to only allow certain critical operations to applications that are considered “trusted” according to 17 
the security policy of the virtual machine.  An example of such a controlled environment is an OSGi 18 
framework on a Java virtual machine (see http://www.osgi.org) or MIDP 2.0.   19 

A related approach is to use an operating system with strong access control and a policy system, which can be 20 
tailored flexibly to protect the resources. In particular, APIs made available to applications running in the OS 21 
are segregated into at least two privilege classes, and the OS prevents applications using the more privileged 22 
APIs unless they can be recognized at install as “trusted” according to the security policy. 23 

Both the above approaches have limitations, notably the loss of flexibility in the programmability of the 24 
Device.  Also they are not risk free. Here are some of the obvious risks: 25 

1. Malicious application code can in theory be barred from all direct access to Device capabilities, or from all 26 
access to privileged APIs. But programming errors in either the main OS or the virtual machine could offer 27 
starting points for exploitation. 28 

2. “Trusted” software (more precisely signed software verified using a valid certificate) may itself be 29 
malicious. It might use privileged APIs in an inappropriate way, and unless an active revocation-checking 30 
capability is in place, cannot be prevented from installing once signed.  31 

3. “Trusted” software may itself contain (unintentional) programming errors, which could be exploited by 32 
malicious application code, allowing untrusted applications to make use of the privileged APIs.  33 

On the other hand, both approaches do significantly improve the Device’s preventative response capabilities, 34 
and can be implemented with conventional processor architectures without change. 35 

End of informative comment. 36 

Given that preventative measures are not perfect, the Device MUST ensure that any failure to correctly 37 
restrict software privileges within the main OS either cannot impair the platform’s mandatory functions (so 38 
can’t force the platform out of a “SUCCESS” state) or else cannot impair the platform’s security response 39 
when leaving a “SUCCESS” state.  40 

7.2.5 Software Load 41 

 42 

Further security techniques MAY be deployed to prevent malicious (or just badly written) applications being 43 
loaded onto the device at all. These may be applied at application install (when the passive application code 44 
is first loaded onto the Device) or at application launch (when the application’s active executable image is 45 
loaded into memory).  46 
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 1 

While these techniques MAY be used in general, they MUST be used in some restricted circumstances (see 2 
below), and thus capabilities to support them are REQUIRED by this specification. Also, this section 3 
references the RIM update protocol defined in Section 5.2, enabling external authorities (RIM_Auths) to 4 
instruct the Device to use these techniques. Where the Device supports the RIM update protocol, it MUST 5 
follow the instructions of RIM_Auths in respect of whether and when to check loaded software against a RIM.  6 

 7 

At Installation: 8 

The Device MAY prevent certain applications from being installed onto the Device post manufacture. This 9 
MUST be controlled by a security policy, and the state of the security policy SHOULD be protected by a RIM11. 10 
It is RECOMMENDED that at least the following criteria are applied to determine whether the application 11 
install is blocked: 12 

1. The application code is supplied with additional data indicating compatible Devices, and this Device is 13 
not one of them 14 

2. The application code is supplied with an internal integrity check, and the check fails. 15 

3. The application code does not match a RIM which the Device has been provided with to check such an 16 
application pre-install.  17 

4. The application code is intended to execute in an OS with a privileged API structure, but does not 18 
clearly declare what privileges (APIs) etc it requires to execute.  19 

5. The application code declares privileged APIs, but is not recognizable as “trusted” according to the 20 
security policy. (For example, it is not signed, the signature is invalid, there is no code-signing 21 
certificate, the code-signing certificate is not valid or is issued by an untrusted CA). 22 

6. The application code declares APIs whose use could harm one or more of the Device’s stakeholders 23 
(especially the Device User), but the source of the application is not identifiable. 24 

7. The application code is identifiable by the Device as revoked (e.g. it has a revoked code-signing 25 
certificate or matches a revoked RIM).  26 

8. The application code matches known signatures for malware (viruses, Trojans etc.) 27 

Alternatively, where the Device allows an install despite some of the above conditions, the Device SHOULD 28 
warn the Device User that there may be danger in installing the application. If the User continues anyway, 29 
the Device SHOULD restrict the application’s function by denying it access to privileged APIs.  30 

 31 

Consistency between Installation and Launch: 32 

The Engine (or its associated RIM Conversion Agent, if external to the Engine) MUST have a capability to 33 
determine the expected image of some installed applications, as they will appear at application launch. This 34 
determination MAY be achieved in some cases simply by measuring the code image just after it has been 35 
installed. This expected launch image SHALL be composed into the form of an internal RIM_Cert, created by a 36 
RIM Conversion Agent (see Section 4). The internal RIM_Cert MUST be associated with a target object and 37 
time of measurement, indicating to a suitable Measurement Agent that the installed application code (target 38 
object) must match the RIM either prior to any application launch or at any application launch (target time).  39 

Such an internal RIM_Cert MUST be created for any installed applications whose execution could impair 40 
mandatory functions. In particular, where the application itself is defined as a mandatory function (by a 41 
RIM_Auth through an external RIM_Cert) then an internal RIM_Cert MUST be created. In addition, even where 42 

                                       
11 This recommendation creates an ecosystem requirement for some RIM_Auth to know how the security policy 
is encoded in the engine and create the corresponding RIM. 
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not defined as a mandatory function, an internal RIM_Cert SHOULD be created for any OS updates, and 1 
SHOULD be created by default for applications using privileged APIs.  2 

For simplicity, an internal RIM_Cert MAY be created by default after any application install, however some 3 
care must be taken here. The impact if the application image at a later date does not match the application 4 
image created at install might be that the Engine has a Reactive response, detecting an exit from a 5 
“SUCCESS” state and transitioning to a “FAILED” state. If the application was not very sensitive (e.g. just a 6 
stand-alone game whose code has been accidentally corrupted) then this could be an over-reaction. 7 
Accordingly, if it is the default policy to create internal RIM_Certs at install, it is RECOMMENDED that they 8 
specify a validity time of “at launch” rather than “prior to launch” as this enables a Preventative response.  9 
The semantics of this are discussed below.  10 

 11 

At Launch: 12 

Start of informative comment: 13 

Applications may be launched into operation either at boot-time or in the post-boot environment. Boot-time 14 
launch will be covered by the boot-time integrity checking of Section 4 i.e. before boot-time launch, any 15 
application that is protected by a RIM_Cert is checked against the RIM. If there is a mis-match then the 16 
platform is in a “FAILED” state and the boot is aborted. Precisely similar logic can apply to launches in the 17 
post-boot environment.  18 

However, in the post-boot environment, some thought needs to be taken about what happens if an installed 19 
application object does not then match a RIM. From a conservative point of view, this indicates there has 20 
already been an “attack” on the Engine concerned, and so the Engine is in a “FAILED” state, thereby 21 
triggering a Reactive Response.  22 

On the other hand, the application code may just have been randomly corrupted, or subject to relatively 23 
crude tampering, which is not much of an “attack”. If the application is just prevented from running, and was 24 
not itself a mandatory function, then there is no reason why the Engine should not still be considered 25 
“SUCCESS”. So just preventing the affected code from running would be acceptable: a Preventative 26 
Response.  27 

End of informative comment. 28 

It is RECOMMENDED that the decision about whether to “Prevent” or “React” is determined through the time 29 
of measurement associated with the RIM_Cert. If the time indication is “prior to launch” then this means that 30 
even if the application never launches, a TIM will have already failed to match a RIM and so the state is to be 31 
regarded as “FAILED”.  32 

Alternatively, if the time indication is “at launch” then the Engine MAY still measure the target application 33 
immediately before launch, and if necessary, pre-emptively block the launch. This is equivalent to treating 34 
the target application as a discretionary function rather than a mandatory function. In effect the Engine 35 
notices that if it continued with the launch then from that point a TIM would mismatch a RIM, thereby 36 
creating a “FAILED” state. However, the Engine tries to avoid a transition to a “FAILED” state if possible, so 37 
pre-emptively decides to prevent this condition arising. This approach is consistent with RIM semantics, while 38 
also giving the maximum chance to “prevent” rather than “cure”. A similar approach to all “event-based” 39 
RIM triggers is applied in the next section.  40 

It is RECOMMENDED that if an Engine does pre-emptively block a launch in this way, then it gives a warning to 41 
the Device User what has happened. The User SHOULD then have an option to uninstall the application 42 
concerned, or attempt a repair/re-install.  43 

 44 
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7.3 Mandatory Support and Recommendations for Reactive 1 

Methods 2 

Start of informative comment: 3 

The reactive approach to maintaining trusted state is to attempt to detect any undesired modification of the 4 
system and then deal with it appropriately.   5 

For detection a subset of the same measurements can be performed as during the boot phase.  They can be 6 
performed periodically, for example by a kind of watchdog process.  Alternatively, measurement could be 7 
triggered by particular events.  It could be expected that components that are continuously used, such as the 8 
kernel itself or file management systems, would be checked on a periodic basis whereas components that are 9 
irregularly used would be checked on an event-driven basis. 10 

End of informative comment. 11 

7.3.1 Mandatory Support for Reactive Methods 12 

 13 

Each Engine which supports an RTV MUST enforce a Reactive Response dictated by the security policy of its 14 
stakeholder, whenever a TIM is found to not match its associated RIM in that Engine.  When such a TIM 15 
validation is associated with mandatory engine functionality and integrity, this is termed an Integrity Failure 16 
(IF). Upon an IF an engine MUST immediately deny access to security sensitive assets, including the RTS: this 17 
functionality MUST only be restored when the engine’s integrity has been restored, through a secure boot.  18 

To assure this response, the Engine SHOULD utilize TCG protected capabilities, termed “TCG_Reactive” 19 
protected capabilities. Such protected capabilities MUST be available to the engine, and where used, MUST 20 
ensure that the RTS can be turned OFF upon an IF notification and that it will stay off until the next boot 21 
cycle. TCG_Reactive capabilities MUST be able to enforce the security policy set by the stakeholder: that 22 
policy may require an immediate engine RESET.  23 

If the DM’s Engine is affected, and the Reactive Response does not require an immediate engine RESET, then 24 
the Engine SHOULD inform the user of a serious security error. If an Engine other than the DM’s Engine is 25 
affected, the DM's Engine MAY attempt to restart the affected Engine. If relevant, the Device SHOULD warn 26 
the user that data/running processes on the affected Engine could be lost or else functionality temporarily 27 
impaired. (Note that if the Engine doesn't have data that can be lost on restart, and the restart is quick, this 28 
is not a requirement, and the recovery back to a “SUCCESS” state may occur without the User knowing this is 29 
happening.)  30 

 31 

Transitive Run-time Trust-Chain 32 

As discussed in Section 5.4, at boot time the RTV of an Engine must verify (at least one other) measurement 33 
verification agent (MVA), which measures and verifies other MVAs and so on. Some of these MVAs will keep 34 
running in the post-boot environment. To extend trust from a hardware base throughout run-time, the Device 35 
must support the following, at least within the DM's Engine: 36 

 37 

- The Engine MUST support at least one MVA which carries on running as a mandatory function after OS start-38 
up, and this MUST run within protected capabilities. This continuing MVA is not REQUIRED to be the RTV, but 39 
can be thought of as a run-time continuation of the RTV. It shall be referred to as a “Primary Run-time MVA” 40 
(PRMVA). Typically as "protected capabilities" do not encompass the main OS (their protection profile has a 41 
restricted perimeter), the PRMVA runs outside the main OS. It may be "beneath" the OS, or "in parallel" to the 42 
OS (e.g. virtualised from the main OS). The PRMVA MUST perform at least one form of scheduled i.e. 43 
time-based integrity measurement, and verify it using a RIM_run Cert. 44 
 45 

 46 
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- Unless the PRMVA is able to perform all run-time integrity checks by itself, the Engine MUST support and use 1 
at least one Secondary RMVA (SRMVA) running outside protected capabilities. The PRMVA SHALL use RIM_run 2 
Certs (see below) to check the operation and integrity of the SRMVA, if this exists. At least some checks by 3 
the PRMVA on the SRMVA SHALL be time-based, so that tampering with the SRMVA can only occur for a limited 4 
time before being detected. In order to decrease the risk of carefully timed attacks, the PRMVA MAY 5 
randomize the intervals between its measurements. The PRMVA MUST have access to a clock that cannot be 6 
changed by code running outside protected capabilities.   7 

- If it exists, the Secondary RMVA SHALL then use RIM_run Certs to check the operation and integrity of other 8 
engine components, which MAY include further RMVAs, e.g. running as applications within the OS. The SRMVA 9 
MAY perform regular time-based measurements, or irregular event-based measurements (e.g. triggered by an 10 
alert that another RMVA wants to measure and verify something). 11 

 12 

Other secure boot Engines MAY also have protected capabilities to support their own PRMVAs. If they don't, 13 
they MUST still have RMVAs, and there MUST be a transitive run-time trust chain from the Device 14 
Manufacturer's PRMVA through to the RMVAs of each other Engine. This MAY involve the DM’s PRMVA making 15 
direct measurement and verification of other Engines, or indirect measurement and verification through the 16 
DM's secondary RMVA, or even more indirectly through other RMVAs on the DM's Engine.   17 

Start of informative comment: 18 

The PRMVA may be able to measure the code of the SRMVA as it is executing e.g. the SRMVA may be part of 19 
the OS kernel, in which case it would suffice for the PRMVA to check the operation and integrity of the 20 
kernel. Or the PRMVA may just measure some regular output of the SRMVA, where the Engine design is such 21 
that tampering with the SRMVA would become evident from an unexpected output. 22 

A minimal implementation is that the PRMVA expects to receive an “OK” message from the SRMVA within a 23 
given time interval (this message is designed to be hard to forge by an attacker who attempts to tamper 24 
with/replace the SRMVA). When the time interval elapses, then the PRMVA attempts to measure the message 25 
from the SRMVA; if no message has been received, or it is not the expected “OK”, then a TIM does not match 26 
a corresponding RIM, and the PRMVA triggers the TCG_Reactive protected capabilities. The sending of a 27 
message by the SRMVA may also trigger an immediate event-based measurement by the PRMVA, so the PRMVA 28 
does not have to wait until the time interval elapses to check if the message is an “OK”.  29 

In such an implementation, the conjunction of the PRMVA (itself a protected capability) and the 30 
TCG_Reactive protected capabilities, can be regarded as a single protected capability, termed a Watchdog 31 
Timer (WDT).  32 

End of informative comment. 33 

Watchdog Timer 34 

To facilitate compliance and conformance testing, a specific functional definition for a PRMVA and associated 35 
TCG_Reactive capabilities is now given, referred to as a Watchdog Timer (WDT). The PRMVA and 36 
TCG_Reactive capabilities MAY be implemented as a WDT. A WDT SHALL have the following functional 37 
properties: 38 

1 Upon an event failure the PRMVA MUST generate a Mandatory Error Response. 39 
2 The Mandatory Error Response: 40 

a. MUST cause access-denial to all cell phone telephony resources and services (where these 41 
are available to the Engine), with the possible exception of emergency assistance services 42 
when the integrity of those services can be assured. 43 

b. MUST disable12 or block MTM functionality until the next time the engine boots. 44 
3 The PRMVA MUST require access to its control interface only from authorized software.  45 

                                       
12 Disablement could be done using a proprietary command sent to the MTM to cause it to shut-down. Or else 
the WDT could prevent access to the MTM from the rest of the Engine until the next boot. A third possibility is 
that the WDT immediately triggers an engine re-boot.  
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4 The PRMVA MUST have a timing [clock] source which is ensured to run whenever the Host CPU is  1 
running.  2 

5 The PRMVA MUST be able to detect when it has not been called within a (configurable) time period.  3 
If the time period elapses without a call, the PRMVA MUST treat this as an event failure.  4 

 5 
Where the PRMVA is used to measure other engine code, the secure integrity measurement: 6 
1. MUST scan and measure the memory content of the host engine on one or more segments of contiguous 7 

physical memory locations. 8 
2. MUST control the addressing and have read access to tested host memory content independent of run-9 

time host software. 10 
3. MUST have configuration data which can be locked down on each boot-cycle until the next engine boot 11 

independent of run-time host software 12 
4. MUST have scan configuration data for each segment which includes control of: 13 

a. The address range of each memory segment to be measured 14 
b. The expected/reference value of each segment’s measurement  15 
c. The rate at which memory is to be scanned 16 
d. The number of memory segments to be scanned 17 

 18 
The integrity measurement MAY include functional requirements in the form of an Algorithm Sequence 19 
Checker (ASC). The ASC enforces functional entities to conform to specific functional security constraints in 20 
addition to their normal functional tasks. The intent of such tests is to validate a form of functional 21 
synchronization wherein tasks are required to sequentially report a pseudo-random sequence value which is 22 
validated against an independent determination of that value. 23 
 24 
The Algorithm Sequence Checker:  25 
1 MUST have a pseudo-random sequence which is started on each boot-cycle, and uniquely seeded,  26 

with the seed distributed to both the calling function and the PRMVA. 27 
2 MAY set a configurable pseudo-random number equation (i.e. feedback taps) on each boot-cycle. 28 
3 MUST generate a new pseudo-random sequence state/count upon receiving an INCREMENT command 29 
4 MUST receive and validate a number [ExpectedState] with every INCREMENT command against its new  30 

pseudo-random sequence state/number 31 
5 MUST generate a PRMVA Mandatory Error Response upon a validation FAILURE. 32 
 33 
 34 
RIM_run Certs 35 

Abstractly, a RIM_run Cert is any structure which defines the authorized expected value of a run-time 36 
measurement. Concrete implementations MAY have the same structure as the RIM_Cert defined in “TCG 37 
Mobile Trusted Module Specification” [5], or MAY have a simpler (proprietary) structure. RIM_run Certs MAY 38 
be internal or external. An uncorrectable failure of a TIM to match a RIM_run MUST cause the engine to 39 
transition to a “FAILED” state.  40 

It is REQUIRED that if there is a non-trivial transitive chain of trust (i.e. if the PRMVA does not perform all 41 
run-time verifications), then links in that chain are supported by integrity measurements, verified using a 42 
non-trivial set of RIM_run Certs (i.e. at least one for each link in the chain). 43 

Each Engine which supports an RTV MUST have a capability to take measurements at intervals of some 44 
executing code and MUST have a capability to check each such measurement against an authorised expected 45 
value. This expected value may be obtained in some cases simply by measuring the code image just after it 46 
has launched. The code is not required to be actively executing at the time at which the measurement is 47 
made and compared with its expected value. The measurement intervals MUST be defined by the Engine’s 48 
stakeholder.  49 
 50 
In general, a RIM_run Cert MUST be created where the engine stakeholder (or a RIM_Auth delegate of the 51 
stakeholder) has instructed that the executing image be subject to run-time integrity. This instruction 52 
mechanism MAY be supported explicitly through the mechanism of external RIM_Certs, or MAY be fixed 53 
implicitly by Engine design, or MAY be updateable through trusted Device management.  54 



TCG Mobile Reference Architecture   TCG Copyright 
Specification version 1.0    

Revision 5 26 June 2008  Page 86 of 89 
 TCG PUBLISHED 

Where explicit, an instruction indicating when to make measurements SHALL be provided through an 1 
extension to a RIM_Cert [see “TCG Mobile Trusted Module Specification”]. The semantics of this extension 2 
MUST therefore describe the following options: 3 

 - A specified (one-off) event in the boot sequence, as discussed in Section 5  4 

  And/Or 5 

- A specified (possibly recurrent) event in the run-time environment, such as an application install, 6 
application launch, a hardware event (e.g. TPM command), a write event to certain files or areas of 7 
memory, or a system interrupt. 8 

  And/Or 9 

- A specified (necessarily) recurrent interval of measurement in the run-time environment, defined in 10 
seconds and exceeding a platform minimum, or if not specified, a platform default interval.  11 

The exact format of the extension and the means for coding the above options is outside the scope of this 12 
specification.  13 

 14 

Mandatory Use of a MTM 15 

A MTM must be able to support run-time integrity in at least the following aspects: 16 

 - The MTM MUST be able to store keys needed to verify external RIM_Certs. 17 

 - The MTM MUST be able to create, export, import and process internal RIM_Certs.  18 

- The MTM MUST be able to store PCR values corresponding to previous measurements e.g. for comparison 19 
with current measurements.  20 

These properties will all be achieved by use of a MRTM, or use of a MLTM with support for local verification 21 
commands; see “TCG Mobile Trusted Module Specification” [5]. 22 
 23 

 24 

7.3.2 Recommendations for Reactive Methods 25 

Start of informative comment: 26 

Need for Integrity Checks 27 

In contrast to boot time integrity checking, it may not be necessary that all software image objects should or 28 
can be checked during run-time – it may be sufficient for relevant stakeholders that a subset of the software 29 
image objects are checked (either on a periodic or event driven basis). 30 

In addition to the automatic periodic execution and event driven execution, this integrity checking should 31 
also be available as a trusted service (probably provided by mandatory security capabilities) that applications 32 
or the OS can call. The measurement process, as well as its scheduling, must be part of the trusted and 33 
measured code. The measurement process will take the form of checking the measurements of software 34 
image objects against known reference values (the Reference Integrity Metrics, RIMs). 35 

 36 

Application Integrity: Consistency before and after Launch 37 

The value of the Reference Integrity Metric (RIM) which contains the expected measurement of an image 38 
object may be different at run time to its value at boot time. Or in general, it may be different during 39 
execution of an application than it is before launch. This means that an engine needs a run-time RIM 40 
(RIM_run) which may be different from the boot-time RIM for the object. Further, unless special 41 
arrangements are made, the RIM_run may change over different instances of the boot sequence and at 42 
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different launches.  For example, the image may be loaded into a different section of memory each time, 1 
changing the values of pointers and hence the value of the image object’s RIM_run overall. 2 

One possible way to ensure that the value of a RIM_run is the same for each instance of the boot sequence is 3 
to ensure that the software image for that RIM is loaded into the same location in memory on each boot. This 4 
sort of restriction should apply to the OS kernel and to any Secondary RMVA that needs to be verified by the 5 
Primary RMVA. (Recall here that the PRMVA runs outside the OS and so does not have a dynamic memory 6 
map.) However, this technique clearly reduces the flexibility of the system with respect to memory allocation 7 
and can only be used to a limited extent. 8 

A more flexible approach is for the RIM_run to be generated afresh for each boot sequence and/or post-boot 9 
application launch. Preferably as soon as possible after boot is completed or a launch image has been verified 10 
(as discussed in Section 7.2), so that the assumption that the Engine is in a “SUCCESS” state still holds. In 11 
such a case, the authorizing entity for the RIM_run, the RIM_run_Auth, is part of the Engine itself (e.g. the 12 
MTM of that Engine). 13 

When an application is actually running, it tends to have a static part (occupying a consistent place in – 14 
possibly virtual - memory) and a dynamic part. The area of memory to which the static part is loaded is often 15 
not predictable at launch; however, after launch, the static part is expected to be stable, and so can form 16 
the basis for further verification Nevertheless, the exact behaviour is OS dependent, and there is no firm 17 
guarantee that the “static” part will not also move around from time to time.  18 

End of informative comment. 19 

An internal RIM_run Cert SHOULD be created for any launched applications which are defined as mandatory 20 
functions, or whose malfunction would compromise mandatory functions. In particular, such a RIM_run Cert 21 
SHOULD be created for the OS kernel. Also, to ensure a transitive chain of trust, such a RIM_run Cert SHOULD 22 
be created for at least one run-time Verification Agent within the main OS e.g. for the SRMVA.  23 

Any part of the executing code image of any launched application which is defined as a mandatory function 24 
which – by Device design - is expected to be static SHOULD be measured and composed into the form of an 25 
internal RIM_run Cert. The internal RIM_run Cert MUST be associated with a target object and time of 26 
measurement, typically indicating to a suitable Measurement Agent that the static part of the executing code 27 
is to be checked at a regular interval (a defined frequency) or at particular events.  28 

 29 

 30 

Time-based and Event-based Integrity 31 

Start of informative comment: 32 

Time-based integrity checks necessarily count as a Reactive approach rather than a Preventative approach. As 33 
something "bad" is already running, there is some sense in which security measures have already failed. Also, 34 
there is necessarily a delay, so the bad application may have already have done some damage. Nevertheless, 35 
they have some clear implementation advantages: 36 

 37 

- It is easy to specify the conditions for carrying out the check, namely just a recurrence interval 38 

- Provided the interval is not too long, the integrity check is unlikely to “miss” something critical. It might be 39 
late, but detection will happen.  40 

- The measurement and integrity checking can run as a low intensity background process to avoid spikes in 41 
processor demand, and interruption of other activities.  42 

 43 

Optimising the background process demand has an impact on how regularly checks can be performed, rather 44 
than whether they can be performed at all. The ideal is probably that the low-level background process is 45 
always checking e.g. if checks are scheduled every 30s, each check takes just under 30s.  46 
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 1 

By contrast, Event-based integrity checks could in theory be either preventative or reactive. This 2 
characteristic generalises the discussion in Section 7.2 concerning prevention or reaction to “bad” application 3 
launch.  4 

Notice that if a RIM_Cert defines that a TIM must match a RIM just before a given event, then the response is 5 
necessarily reactive. If the Device checks, and discovers a mismatch, before the event then even if it blocks 6 
the event it is too late for anything but a Reactive response: a RIM check has already failed and the state is 7 
“FAILED”.  8 

Alternatively, if a RIM_Cert defines that a TIM must match a RIM at a given event, then the Device has more 9 
flexibility. It could wait for the event, and only then carry out the measurement/verification; if that fails, 10 
this still gives rise to a Reactive response. Or, more pro-actively, just before accepting the event, the Device 11 
could attempt to predict what the TIM would be if the event occurred. If this mis-matches the RIM, then the 12 
Device can block the event. As there is never actually a mis-match between a RIM and a TIM, the state 13 
remains “SUCCESS”. So this is a Preventative Response. 14 

How feasible event prevention really is depends a bit on how the RMVA runs. In one model, the RMVA is 15 
always running, frequently monitoring areas of memory/storage/hardware etc. for triggering events. 16 
Alternatively, the RMVA is dormant, and certain triggers are detected by the OS and used to wake up the 17 
RMVA. If the trigger event that wakes up the RMVA is precisely the event at which an integrity check is 18 
needed, then it will clearly not be possible to prevent this event.  19 

It must be noted that one issue with event-based checking (either reactive or preventative) is a sudden spike 20 
in processor demand. As the event is pretty much instant, an integrity check and response will also be 21 
required pretty instantly, which is much harder to engineer than a low-level time-based process.  22 

End of informative comment. 23 

Partly for performance reasons, and partly because suitable events may not be defined or easily definable by 24 
the RIM_Auths, the use of event-based checking is not REQUIRED. However, it is RECOMMENDED.  25 

In particular, at the level of the PRMVA it is possible to identify lots of potential trigger events, such as 26 
ordinal calls to the MTM or other interface calls into protected capabilities, some of which SHOULD be used to 27 
carry out an integrity check. These are special events which are internal to the Roots of Trust and other 28 
protected capabilities. Of course, at the level of the Secondary RMVA or higher, other trigger events are 29 
possible, and the semantics for defining them are likely to be very platform dependent.  30 

 31 

Recommended Use of the MTM 32 

As well as the mandatory uses mentioned in Section 7.3.1, the MTM SHOULD be used to detect certain 33 
triggering events for run-time measurements. For example, certain PCR extends or uses of certain high 34 
sensitivity commands (like migration, management, delegation or owner changes) MAY act as triggering 35 
events. 36 

Start of informative comment: 37 

It is an interesting question whether a PCR should be repeatedly extended on repeated run-time integrity 38 
checks of the same target object. Typically an integrity check just detects that something is the same as 39 
when it was last measured. In that case, it is inefficient to keep extending the same PCR with the same 40 
value, as the value stored in the PCR will keep changing and a new (internal) RIM_Cert will be needed to 41 
verify each extend. Also, repeatedly extending the same PCR makes attestation very complex, as the 42 
verifying entity must allow for how many times that PCR has been re-extended to work out if its current value 43 
is correct. If it has been re-extended every 5 seconds since the platform booted up a month ago, that will be 44 
a long log of PCR events to transmit and check.  45 

It is therefore advisable to just to leave a PCR as it is, so it consistently stores a boot-time measurement, or 46 
maybe the first run-time measurement of the target object. This could give rise to a very simplified 47 
representation of a run-time RIM_Cert within the MTM. Basically, there is just a flag raised on certain PCR 48 
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values to check that the value of any new measurement is consistent with the stored value. If they do match, 1 
the new measurement value can just be discarded by the RMVA, and the PCR does not need to be extended. 2 
If they don't match, this is an error and the RMVA can readily enforce (at least part of) the security response 3 
by forcing the MTM to shut down.  4 

End of informative comment. 5 

 6 

The engine stakeholder MAY wish to record in the MTM the fact that a re-measurement has happened (e.g. a 7 
proof that run-time integrity is working might be needed for attestation purposes); if so, just discarding 8 
repeat measurement values will not achieve this.  If repeated measurements are extended into the MTM, it is 9 
RECOMMENDED to use a different - but matching - PCR from the original PCR, and then keep this matching 10 
PCR changing while the original PCR retains its boot-time value (or other first extended value).  11 

 12 

Start of informative comment: 13 

In that case, the "flag" idea doesn’t quite work, but can be modified. The re-measurement PCR has the flag, 14 
and a pointer to the PCR used for first measurement. On each extend to the re-measurement PCR, the RMVA 15 
just checks that the value being extended matches that extended to the first measurement PCR.   16 

Finally, in cases where a re-measurement value is expected to be different from the original measurement 17 
(i.e. because it has been changed by an event, and this change is expected from an external RIM_Cert), the 18 
simple flag model will break down. Rather than use up one more PCR for each new measurement value, it 19 
makes more sense to extend the changed value into the original PCR. However, there is now no easy way to 20 
detect that any further measurements will match the (updated) expected value, as the PCR value is now a 21 
function of two extends, rather than just the most recent extend.  22 

In practice the only way to cope with this is by formally creating a new (internal) RIM_Cert whenever an 23 
expected measurement value changes, and importing it back into the MTM when verification is necessary. 24 
This is less efficient than a simple flag on certain PCRs of course.  25 

End of informative comment. 26 

 27 

[End of document] 28 


